Mineral Processing of Nonferrous Metals
We studied a number of models for the description of copper reduction by fine zinc powder in aqueous solutions. The experimentswere carried out in devices with a magnetic stirrer at mixing speeds of 40–150 rpm and temperatures of 15–50 °C. We investigated the influence exerted on the process by macromolecular flocculants such as non-ionic magnafloc 333, cationic besflok 6645 and anionic besfloc 4034. Under industrial conditions, these flocculants are used at the hydrolytic solution purification stage and then they are fed to cementing purification together with the clarified solution. Aqueous flocculant solutions of 2,5 g/l containing 2–4 g/l of zinc dust and 50–200 mg/l of flocculant were used in the experiments. Copper content in the initial and final solutions was quantitatively determined by spectrophotometric analysis with the preliminary copper transfer to the ammonia complex. Experiment duration varied from 1 to 8 min. The degree of copper reduction from solutions was 10–90 %. It was found that at low mixing rates the process kinetics can be described by the kinetic equation of the first order. At high speeds, the kinetics of the studied heterogeneous reactionwith added flocculants is more adequately described by the velocity change equation as a square root of the process duration. It wasshown that the highest constant of cementation rate is observed in experiments without the addition of surfactants. Anionic flocculant slows down the cementation process to a lesser extent than cationic one, which is consistent with the theory of electrochemical processes and shows that the discharge of copper cations under these conditions limits the cementation process. Regularities revealed in the studied process remain as temperature increases. It was noted that the addition of high-molecular substances with a relative molecular mass of 20 million in an amount of 50–200 mg/l inhibit the cementation process. This fact must be taken into account in industrial conditions where cementing purification from copper and other impurities is carried out from flocculant-containing solutions.
Metallurgy of Nonferrous Metals
The paper presents the developed composition and technology for obtaining a repair mixture consisting of lumped corundum with a TiB2–C composite coating wettable with aluminum for restoration of local bottom block fractures without electrolyzer stops. The proposed technical solution made it possible to reduce bottom wear and increase aluminum electrolyzer service life by 6 months.A mixture of titanium diboride powder and a refractory powder-like binder in a ratio of 50 : 50 (wt.%) was used to obtain the repair mixture with an optimal composition. Then the lumped corundum was coated with the obtained mixture, dried at 150 °C and after that heat-treated under a carbon-bed at t= 700÷900 °C. As a result of reducing firing the TiB2–C composite material with a carbon content of 15–20 wt.% was formed on the surface of lumped corundum. A qualitative evaluation of the properties of the developed composite coating shows that the coating has a sufficiently high hardness, wear resistance and adhesion to the substrate after the heat treatment. For pilot testing, the repair mixture was covered with molten aluminum to obtain an Al–TiB2–C repair mass in the form of plates. The pilot testing of the repair mass on the 400 kA operating electrolyzer in the RUSAL-Sayanogorsk pilot shop showed that the bottom wear have slowed down 3 months after the local fractures were restored without electrolysis bath stops. This fact is evidenced by a 13 % decrease in the average depth of fractures with a stable current value of 4,7–4,8 kA/bloom after repair. Thus, the locallyused repair mass slowed that the overall wear of the cathode surface and allowed to extend the electrolyzer life.
The study covers the process of obtaining the Al–B master alloy by the KBF4and B2O3aluminothermic reduction using KF–AlF3and KF–NaF–AlF3fluoride fluxes at 983 and 1123 К, respectively, and KCl–NaCl–KF chloride-fluoride fluxes at Т= 1173÷1223 К. All experiments were carried out under the same conditions: molten mixture stirring rate was 400 rpm, synthesis duration was 30min. The maximum amount of boron (1,5 %) in the Al–B alloy was obtained when using KBF4(3 % per B) as a boron-containing raw material in the KF–AlF3medium with a molar (cryolite) ratio (CR) of KF/AlF3equal to 1,3, atТ= 983 К, while boron recovery ratio did not exceed 75 %. Comparable results were obtained in experiments with KF–NaF–AlF3f lux (CR = 1,5) at Т= 1123 К. However, with the increased concentration of fed boron its recovery ratio decreased substantially. It is connected with the higher decomposition temperature of not only KBF4, but also less thermally stable NaBF4 formed as a result of exchange reaction in the melt. Therefore it is not recommended to use sodium salts as a f lux component. The Al–B master alloys obtained by KBF4reduction in fluoride fluxes were solid solutions of B in Al containing the AlB2intermetallic compound. The lowest amount of boron in aluminum with the minimum degree of extraction was obtained in experiments with the B2O3in molten KF–AlF3with CR = 1,5. Nevertheless, the results of scanning electron microscopy indicate a uniform distribution of B over the Al matrix and the absence of intermetallic compounds, while a large amount of Al2O3was found, which is the product of B2O3reactions with both liquid Al and KF–AlF3flux.
Pressure Treatment of Metals
The paper provides the results of studying the effect of technological factors of the cold pipe rolling process on the changingof Q-factor distribution along the deformation cone. The Q-factor value, which is the relationship between actual deformation on the wall thickness and actual deformation on the pipe mean diameter, and the pattern of its distribution along the deformation cone are controlledvalues when rolling pipes from titanium and zirconium alloys of a certain range. The Q-factor defines whether metal grains will be oriented radially or tangentially. It is desirable that Q-factor f luctuate around its definite value with low amplitude along the entire deformation cone. It is determined that the method used to calculate the pipe wall thickness distribution along the deformation cone has a significant effect on the change in the Q-factor distribution along the deformation cone. The advantages of using mandrels with a curvilinear generatrix of the working surface profile are confirmed. Dependences ascertained in the article can be used to calculate the schedules of rolling and calibration of cold pilgering mill tools.
Physical Metallurgy and Heat Treatment
The paper focuses on obtaining heterophase powder ceramics and consolidated ceramics based on borides and silicides of hafnium and molybdenum by combining the methods of self-propagating high-temperature synthesis (SHS) and hot pressing (HP). Composite ceramic SHS powders HfB2–HfSi2–MoSi2 were obtained according to the scheme of magnesium-thermal reduction from oxide raw materials where the combustion wave is characterized by temperatures of 1750–2119 K and high mass combustion rates of 8,4– 9,3 g/s. The structure of synthesized SHS powders consists of relatively large MoSi2 grains up to 10 μm in size and submicron elongated HfB2 grains located mainly inside the MoSi2 grains and rounded Si precipitates. The composition with a lower concentration of boron contains a large number of polyhedral HfSi2 grains with a size of less than 10 μm. The resulting powders are characterized by an average particle size of ~6 μm with a maximum size up to 26 μm. Phase compositions of ceramics consolidated by the HP method and SHS synthesized powders are identical. The microstructure of compact samples consists of faceted HfB2 elongated grains 0,5– 10,0 μm in size, polyhedral HfSi2 and MoSi2 grains up to 8–10 μm in size and silicon interlayers. Consolidated ceramics has a high structural and chemical homogeneity, low residual porosity of 1,1–1,7 %, high hardness of 11,7–12,6 GPa and thermal conductivity of 62–87 W/(m·K).
The quality of products made of sheet aluminum alloys strongly depends on the technological features of the sheet stamping process, as well as on the structure of sheet semi-finished products. The grain size and grain structure uniformity are among the key structural features that influence stampability. A method is proposed and the homogeneity of the grain structure is evaluated. Stampability of Al2Mg and Al6Mg aluminium alloys was evaluated based on measurements of the spring back index, minimum bending radius, stamping ratio, and Martens strain index. Cold work (with a strain degree of 20 %) and subsequent recrystallization annealing at temperatures of 250, 350 and 450 °C for 1 h were used to obtain a grain structure of (26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg alloy) and (120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg alloy) in size. As a result of processing, the effect of the initial grain size was revealed: the coarser structure of the Al2Mg alloy led to a larger grain size after strain and annealing. It was found that an increase in the grain size in both alloys leads to an increase in the Martens index and a decrease in the stamping ratio, which indicates higher stampability of the alloys in the drawing operations of sheet stamping. In the Al2Mg alloy, an increase in the grain size leads to a decrease in the spring back index by 1,5–1,7 times, and an increase in the minimum bending radius. In the Al6Mg alloy, an increase in the grain size leads to an increase in the spring back index by 1,1–1,2 times, and a decrease in the minimum bending radius. The Al6Mg minimum bending radius remains higher compared to Al2Mg regardless of the grain size. Grain size inhomogeneity in the Al6Mg alloy causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. In the Al2Mg alloy, grain size inhomogeneity causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. For the spring back index, the increase in grain size inhomogeneity causes a high scatter of data. In the Al6Mg alloy, the low annealing temperature led to the preservation of the non-recrystallized structure, which influenced the decrease in stampability.
Corrosion and Protection of Metals
The influence of domestic VNKh-L type nitrogen-containing corrosion inhibitors on the corrosion patterns of zinc coating on steel in a neutral environment was investigated. The paper aims to study the structure of the corroding zinc coating surface, as well as the influence of conditions simulating the degradation of inhibitors under actual application conditions on their protective properties. Mechanical activation in a ball planetary mill was used to simulate the thermal and deformation conditions of inhibitors. Zinc coating corrosion on steel was carried out in a sulfate-chloride environment simulating atmospheric corrosion and in borate buffer solution. The concentration of inhibitors in corrosion environments was 0,2 wt.%. The corroded surface morphology of the zinc coating was studied using the Philips SEM-515 scanning electron microscope (at an accelerating voltage of 10 kV) with an X-ray micro probe. Studies of the zinc coating corrosion rate on St 08 were carried out by the indirect measurement of corrosion resistance using the MONIKOR-1 corrosion meter. Borate buffer solution (Na2B4O7 + H3BO3, pH = 6,6) and the solution simulating atmospheric corrosion (NaCl + + Na2SO4, pH = 6,0) were used as corrosive environments. The corrosion rate of samples in corrosive environments without inhibitors was taken as 1. Exposure time of each sample in corrosive environments was 3 h. The chemical composition of corrosion products was studied by mirror reflection in the IR range. The IR spectra of metal plate surfaces were recorded on the FSM-1202 IR Fourier spectrometer in a wavelength range of 450–4000 cm–1 with a resolution of 2 cm–1 and an accumulation of 100 scans. A mirror reflection attachment with a 10° angle of incidence was used to obtain reflection spectra. The zinc coating corrosion rate in sulfate-chloride and borate environments in the presence of inhibitors based on benzotriazole and cyclohexylamine was virtually not reduced compared to the corrosion rate in the same environments without inhibitors. When both initial and mechanically activated inhibitors based on morpholine and benzotriazole are added to the corrosion environment, the iron corrosion rate decreases compared to the corrosion rate in the same environments without inhibitors. In the presence of initial and mechanically activated inhibitors of both groups, pitting corrosion of the zinc coating in the studied corrosion environments is observed. At the same time, the pitting depth under corrosion conditions is less than the zinc coating thickness.
Alloy composition was developed and heat treatment conditions were selected to obtain an intensively dissolving magnesium alloy to be used as a ball plug under oil-well precommissioning conditions, i.e. to seal various well sections with further near-complete destruction of these plugs for a short time (up to 11 h). It was found that the reason of high dissolution rate of Mg alloy with a composition similar to high-strength ML6 is a higher nickel content (up to 0,19 %). The compounds of this element are located along the grain boundaries, and it leads to intense intercrystalline corrosion of the alloy in a medium containing chlorine ions. It is shown that an effective method for controlling the Mg alloy dissolution rate is to synthesize coatings on its surface with various thicknesses by plasma electrolytic treatment (PET) in aqueous solution containing 110 g/l of commercial water glass. This method allowed synthesizing coatings with a thickness from 10 to 41 μm on the experimental magnesium alloy with increased nickel concentrations (~ 0,19 %) in a short period of time (from 10 to 20 min) with low set AC current density (4 A/dm2) – galvanostatic mode of PET processes. Corrosion investigations were carried out in 3 % KCl aqueous solution at 93 ± 2 °C. PET coatings were obtained on the magnesium alloy using a capacitive unit. Corrosion tests conditions for materials used as ball plugs in oil well seals were similar to that cited in foreign researches.
CHRONICLE
ISSN 2412-8783 (Online)