Preview

Izvestiya Vuzov. Tsvetnaya Metallurgiya

Расширенный поиск

СВОЙСТВА ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ

https://doi.org/10.17073/0021-3438-2016-6-71-85

Аннотация

За последние несколько десятилетий открыто относительно небольшое число революционных материалов в области металловедения и физики металлов, и объемные металлические стекла одни из них. Их прочность и твердость значительно выше, а модуль упругости ниже, чем кристаллических сплавов, что приводит к высокой энергии запасенной упругой деформации. Эти материалы также имеют очень хорошую устойчивость к коррозии. В настоящей работе исследованы свойства объемных металлических стекол, в частности тепловые, механические, магнитные, электрические показатели и коррозионная стойкость, а также приводятся области применения данных сплавов.

Об авторах

Д. В. Лузгин
WPI-AIMR, Университет Тохоку, Япония
Япония
докт. техн. наук, профессор Университета Тохоку


В. И. Полькин
Национальный исследовательский технологический университет «МИСиС», г. Москва
Россия
канд. техн. наук, доцент кафедры «Технология и оборудование трубного производства»


Список литературы

1. Глезер А.М., Шурыгина Н.А. Аморфно-нанокристаллические сплавы. М.: Физматлит, 2013; Glezer A.M., Shurygina N.A. Amorfnonanokristallicheskie splavy [Amorphous and nanocrystalline alloys]. Moscow: Fizmatlit, 2013.

2. Лузгин Д.В., Полькин В.И. Объемные металлические стекла: Получение, структура, структурные изменения при нагреве // Изв. вузов. Цвет. металлургия. 2015. No. 6. С. 43—52; Louzguine D.V., Pol’kin V.I. Bulk metallic glasses: Fabrication, structure, and structural changes under heating. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 1. P. 25—32.

3. Inoue A. High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM. 1995. Vol. 36. Р. 866—875.

4. Johnson W.L. Bulk glass-forming metallic alloys: science and technology. Mater. Res. Bull. 1999. Vol. 24. Р. 42—56.

5. Абросимова Г.Е., Аронин А.С., Зверькова И.И. Фазовые превращения при кристаллизации аморфных сплавов Al—Ni—Re // ФММ. 2002. Т. 94. С. 1—6; Abrosimova G.E., Aronin A.S., Zver’kova I.I. Fazovye prevrashcheniya pri kristallizatsii amorfnykh splavov Al—Ni—Re [Phase transformations at crystallization of amorphous alloys of Al—Ni—RE]. Fizika metallov i metallovedenie. 2002. Vol. 94. P.1—6.

6. Angell C.A. Formation of glasses from liquids and biopolymers. Science. 1995. Vol. 2. Р. 1924—1935.

7. Debenedetti P.G., Stillinger F.H. Supercooled liquids and the glass transition. Nature. 2001. Vol. 410. Р. 259—267.

8. Лысенко А.В., Ляхов С.А., Хоник В.А., Язвицкий М.Ю. Сдвиговая вязкость металлического стекла Pd<sub>40</sub>Cu<sub>40</sub>P<sub>20</sub> в условиях изохронного нагрева ниже температуры стеклования // Физика твердого тела. 2009. T. 51. C. 209; Lysenko A.V., Ljahov S.A., Honik V.A., Jazvickij M.Ju. Sdvigovaja vjazkost’ metallicheskogo stekla Pd40Cu40P20 v uslovijah izohronnogo nagreva nizhe temperatury steklovanija [Shift viscosity of metal Pd<sub>40</sub>Cu<sub>40</sub>P<sub>20</sub> glass in the conditions of isochronous heating is lower than vitrification temperature]. Fizika tverdogo tela. 2009. Vol. 51. P. 209.

9. Aljerf M., Georgarakisa K., Yavari A.R. Shaping of metallic glasses by stress-annealing without thermal em-brittlement. Acta Mater. 2011. Vol. 59. Р. 3817—3824.

10. Harms U., Shen T.D., Schwarz R.B. Thermal conductivity of Pd<sub>40</sub>Ni<sub>40–x</sub>Cu<sub>x</sub>P<sub>20</sub> metallic glasses. Scripta Mater. 2002. Vol. 47. Р. 411—414.

11. Yamasaki M., Kagao S., Kawamura Y. Thermal diffusivity and conductivity of Zr<sub>55</sub>Al<sub>10</sub>Ni<sub>5</sub>Cu<sub>30</sub> bulk metallic glass. Scripta Mater. 2005. Vol. 53. Р. 63—67.

12. Yamasaki M., Kagao S., Kawamura Y.,Yoshimura K. Thermal diffusivity and conductivity of supercooled liquid in Zr<sub>41</sub>Ti<sub>14</sub>Cu<sub>12</sub>Ni<sub>10</sub>Be<sub>23</sub> metallic glass. Appl. Phys. Lett. 2004. Vol. 84. Р. 4653—4655.

13. Kimura H.M., Inoue A., Nishiyama N., Sasamori K., Ha-ruyama O., Masumoto T. Thermal, mechanical, and physical properties of supercooled liquid in Pd—Cu—Ni—P amorphous alloy. Sci. Rep. 1997. Vol. 43. Р. 101—106.

14. Busch R. The thermophysical properties of bulk metallic glass-forming liquids. JOM. 2000. Vol. 52. Р. 39—42.

15. Louzguine-Luzgin D.V., Seki I., Yamamoto T., Kawaji H., Suryanarayana C., Inoue A. Double-stage glass transition in a metallic glass. Phys. Rev. B. 2010. Vol. 81. No. 144202.

16. Абросимова Г.Е., Аронин А.С., Асадчиков В.Е., Серебря-ков А.В. Эволюция структуры аморфных сплавов Co— Fe—Si—B и Fe—B при натреве ниже температуры кристаллизации // ФММ. 1986. No. 3. С. 496—502; Abrosimova G.E., Aronin A.S., Asadchikov V.E., Serebrjakov A.V. Jevoljucija struktury amorfnyh splavov Co—Fe—Si—B i Fe—B pri natreve nizhe temperatury kristallizacii [Evolution of the structure of amorphous alloys Co—Fe—Si—B and Fe—B in native below crystallization temperature]. Fizika metallov i metallovedenie. 1986. No. 3. Р. 496—502.

17. Калошкин С.Д., Томилин И.А. Термодинамическое описание превращений аморфных твердых растворов в системе железо—кремний—бор // Журн. физ. химии. 1996. No. 1. С. 27—32; Kaloshkin S.D., Tomilin I.A. Termodinamicheskoe opisanie prevrashhenij amorfnyh tverdyh rastvorov v sisteme zhelezo—kremnij—bor [Thermodynamic description of the transformations of amorphous solid solutions in the system iron—silicon— boron]. Zhurnal fizicheskoj khimii. 1996. No. 1. P. 27—32.

18. Yavari A.R., Moulec A. Le, Inoue A., Nishiyama N., Lupu N., Matsubara E., Botta W.J., Vaughan G., Michiel M.Di., Kvick A. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 2005. Vol. 53. Р. 1611—1619.

19. Zöllmer V., Rätzke K., Faupel F., Rehmet A., Geyer U. Evidence of diffusion via collective hopping in metallic supercooled liquids and glasses. Phys. Rev. B. 2002. Vol. 65. No. 220201.

20. Knorr M.P., Freitag M.K., Mehrer H.J. Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr<sub>46</sub>,<sub>75</sub>Ti<sub>8</sub>,<sub>25</sub>Cu<sub>7</sub>,<sub>5</sub>Ni<sub>10</sub>Be<sub>27</sub>,<sub>5</sub>. J. Non-Cryst. Solids. 1999. Vol. 250-252. Р. 669—673.

21. Egami T. Nano-glass mechanism of bulk metallic glass formation. Mater. Trans. 2002. Vol. 43. Р. 510—517.

22. Поздняков В.А., Глезер А.М. Структурные механизмы разрушения аморфных металлических сплавов// Доклады РАН. 2002. Т. 387. No. 4. С. 471—474; Pozdnyakov V.A., Glezer A.M. Strukturnye mehanizmy razrushenija amorfnyh metallicheskih splavov [Structural mechanisms of fracture in amorphous metallic alloys]. 2002. Doklady Physics. 2002. Vol. 47. P. 852—855.

23. He Q., Cheng Y.Q, Ma E., Xu J. Locating bulk metallic glasses with high fracture toughness: chemical effects and composition optimization. Acta Mater. 2011. Vol. 59. Р. 202—215.

24. Demetriou M.D., Launey M.E., Garrett G., Schramm P.J., Hofmann D.C., Johnson W.L., Ritchie R.O. A damage tolerant glass. Nature Mater. 2011. Vol. 10. Р. 123—128.

25. Ke H.B., Wen P., Peng H.L., Wang W.H., Greer A.L. Homogeneous deformation of metallic glass at room temperature reveals large dilatation. Scripta Mater. 2011. Vol. 64. Р. 966—969.

26. Abrosimova G.E., Aronin A.S., Afonikova N.S., Kobelev N.P. Influence of deformation on the structural transformation of the Pd<sub>40</sub>Ni<sub>40</sub>P<sub>20</sub> amorphous phase. Phys. Solid State. 2010. Vol. 52. Р. 1892—1898.

27. Louzguine-Luzgin D.V., Ketov S.V., Wang Z., Miyama M.J., Tsarkov A.A., Churyumov A.Yu. Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio. Mater. Sci. Eng. A. 2014. Vol. 616. Р. 288—296.

28. Conner R.D., Li Y., Nix W.D., Johnson W.L. Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 2004. Vol. 52. Р. 2429—2434.

29. Donovan P.E, Stobbs W.M. The structure of shear bands in metallic glasses. Acta Metall. 1981. Vol. 29. Р. 1419—1436.

30. Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977. Vol. 25. Р. 407—415.

31. Argon A. Plastic deformation in metallic glasses. Acta Metall. 1979. Vol. 27. Р. 47—58.

32. Louzguine-Luzgin D.V., Zadorozhnyy V.Yu., Chen N., Ketov S.V. Evidence of the existence of two deformation stages in bulk metallic glasses. J. Non-Crys. Solids. 2014. Vol. 396–397. P. 20—24.

33. Perepezko J.H., Imhoff S.D., Chen M.W., Wang J.Q., Gonzalez S. Nucleation of shear bands in amorphous alloys. PNAS. 2014 . Vol. 111. P. 3938—3942.

34. Zhang Q.S., Zhang W., Xie G.Q., Louzguine-Luzgin D.V., Inoue A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater. 2010. Vol. 58. Р. 904—909.

35. Schuh C.A., Lund A.C. Nieh T.G. New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 2004. Vol. 52. P. 5879—5891.

36. Xi K.K., Zhao D.Q., Pan M.X., Wang W.H., Wu Y., Lewandowski J.J. Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Phys. Rev. Lett. 2005. Vol. 94. No. 125510.

37. Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006. Vol. 5. P.15—18.

38. Cheng Y.Q., Han Z., Li Y., Ma E. Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B. 2009. Vol. 80. No. 134115.

39. Ketov S.V., Louzguine-Luzgin D.V. Localized shear deformation and softening of bulk metallic glass: stress or temperature driven. Sci. Reports. 2013. Vol. 3. Р. 1—6.

40. Xi K.K., Zhao D.Q., Pan M.X., Wang W.H., Wu Y., Lewandowski J.J. Fracture of brittle metallic glasses: brittleness or plasticity. Phys. Rev. Lett. 2005. Vol. 94. Р. 1—4.

41. Conner R.D., Johnson W.L., Paton N.E., Nix W.D. Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 2003. Vol. 94. Р. 904—911.

42. Schuh C.A., Hufnagel T.C., Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater. 2007. Vol. 55. P. 4067—4109.

43. Yang B., Morrison M.L., Liaw PP.K., Buchanan R.A., Wang G., Liu C.T., Denda M. Dynamic evolution of nano-scale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 2005. Vol. 86. P. 4—7.

44. Chen N., Louzguine-Luzgin D.V., Xie G.Q., Inoue A. Nano-scale wavy fracture surface of a Pd-based bulk metallic glass. Appl. Phys. Lett. 2009. Vol. 94. No. 131906.

45. Louzguine-Luzgin D.V., Chen N., Zadorozhnyy V.Yu, Seki I., Inoue A. Pd<sub>40</sub>Ni<sub>40</sub>Si<sub>5</sub>P<sub>15</sub> bulk metallic glass properties variation as a function of sample thickness. Intermetallics. 2013. Vol. 33. P. 67—72.

46. Louzguine-Luzgin D.V., Seki I., Ketov S.V., Louzguina-Luzgina L.V., Polkin V.I., Chen N., Fecht H., Vasiliev A.N., Kawaji H. Glass-transition process in an Au-based metallic glass. J. Non-Cryst. Solids. 2015. Vol. 419. Р. 12—15.

47. Глезер A.M., Бетехтин В.И. Свободный объем и механизмы микроразрушения аморфных сплавов // Физика твердого тела. 1996. Т. 38. No. 6. С. 1784—1790; Glezer A.M., Betehtin V.I. Svobodnyj objom i mehanizmy mikrorazrushenija amorfnyh splavov [Free volume and mechanisms of microfractures amorphous alloys]. Fizika tverdogo tela. 1996. Vol. 38. No. 6. Р. 1784—1790.

48. Liu F.X., Liaw P.K., Wang G.Y., Chiang C.L., Smith D.A., Rack P.D., Chu J.P., Buchanan R.A. Specimen-geometry effects on mechanical behavior of metallic glasses. Intermetallics. 2006. Vol. 14. P. 1014—1018.

49. Sunny G., Lewandowski J., Prakash V. Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass. J. Mater. Res. 2007. Vol. 22. P. 389—401.

50. Бетехтин В.И., Глезер А.М., Кадомцев А.Г., Кипяткова А.Ю. Избыточный свободный объем и механические свойства аморфных сплавов // ФТТ. 1998. Т. 40. С. 1–5; Betekhtin V.I., Glezer A.M., Kadomtsev A.G., Kipyatkova A.Yu. Izbytochnyi svobodnyi ob"em i mekhanicheskie svoistva amorfnykh splavov [Excess free volume and mechanical properties of amorphous alloys]. Fizika tverdogo tela. 1998. Vol. 40. P. 1–5.

51. Uchic M.D., Dimiduk D.M., Florando N., Nix W.D. Sample dimensions influence strength and crystal plasticity. Science. 2004. Vol. 305. P. 986—989.

52. Gu L., Xu L., Zhang Q.S., Pan D., Chen N., Louzguine-Luzgin D. V., Yao K.-F., Wang W.H., Ikuhara Y. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation. Sci. Rep. 2015. Vol. 5. No. 9122.

53. Gilbert C.J., Ritchie R.O., Johnson W.L. Fracture toughness and fatigue-crack propagation in a Zr—Ti—Ni—Cu—Be bulk metallic glass. Appl. Phys. Lett. 1997. Vol. 71. P. 476—478.

54. Lowhaphandu P., Lewandowski J.J. Fracture toughness and notched toughness of bulk amorphous alloy: Zr—Ti— Ni—Cu—Be. Scripta Mater. 1998. Vol. 38. P. 1811—1817.

55. Zhang Z. F., Eckert J., Schultz L. Fatigue and fracture behavior of bulk metallic glass. Metall. Mater. Trans. A. 2004. Vol. 35. Р. 3489—3498.

56. Wang G.Y., Liaw P.K., Peter W.H., Yang B., Yokoyama Y., Benson M.L., Green B.A., Kirkham M., White S.A., Saleh T.A., McDaniels R.L., Steward R.V., Buchanan R.A., Liu C.T., Brook C.R. Fatigue behavior of bulk-metallic glasses. Intermetallics. 2004. Vol. 12. P. 885—892.

57. Dalla Torre F.H., Dubach A., Nelson A. Löffler J.F. Temperature, strain and strain rate dependence of serrated flow in bulk metallic glasses. Mater. Trans. 2007. Vol. 48. P. 1774—1780.

58. Gonzalez S., Xie G.Q., Louzguine-Luzgin D.V., Perepezko J.H., Inoue A. Deformation and strain rate sensitivity of a Zr—Cu—Fe—Al metallic glass. Mater. Sci. Eng. A. 2011. Vol. 528. P. 3506—3512.

59. Heggen M., Spaepen F., Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. J. Appl. Phys. 2005. Vol. 97. No. 033506.

60. Rene L., Bruno P. Rodrigues., Wondraczek L. Strain-rate sensitivity of glasses. J. Non-Crys. Solids. 2014. Vol. 404. P. 124—134.

61. Dalla Torre F.H., Dubach A., Siegrist M., Löffler J.F. Negative strain rate sensitivity in bulk metallic glass and its similari ties with dynamic strain aging effect during deformation. Appl. Phys. Lett. 2006. Vol. 89. No. 091918.

62. Trichy G.R., Scattergood R.O., Koch C.C., Murty K.L. Ball indentation tests for a Zr-based bulk metallic glass. Scrip-ta Mater. 2005. Vol. 53. P. 1461—1465.

63. Saida J., Setyawan A. D., Kato H., Matsushita M., Inoue A. Improvement of Plasticity in Pd Containing Zr—Al— Ni—Cu Bulk Metallic Glass by Deformation-Induced Nano Structure Change. Mater. Trans. 2008. Vol. 49. P. 2732—2736.

64. Louzguine-Luzgin D.V., Yavari A.R., Xie G., Madge S., Li S., Saida J., Greer A.L., Inoue A. Tensile deformation behaviour of Zr-based glassy alloys. Philos. Mag. Lett. 2010. Vol. 90. No. 2. P. 139—148.

65. Yavari A.R., Lewandowski J.J., Eckert J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007. Vol. 32. P. 635—638.

66. Guo H., Yan P.F., Wang Y.B., Tan J., Zhang Z.F., Sui M.L., Ma E. Tensile ductility and necking of metallic glass. Nature Mater. 2007. Vol. 6. P. 735—738.

67. Volkert C.A., Donohue A., Spaepen F. Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 2008. Vol. 15. P. 1—6.

68. Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006. Vol. 5. P. 15—18.

69. Zhang Y., Stelmashenko N.A., Barber Z.H., Wang W.H., Lewandowski J.J., Greer A.L. Local temperature rises during mechanical testing of metallic glasses. J. Mater. Res. 2007. Vol. 22. P. 419—427.

70. Georgarakis K., Aljerf M., Li Y., Lemoulec A., Charlot F., Yavari A.R., Chornokhvostenko K., Tabachnikova E., Evangelakis G.A., Miracle D.B., Greer A. L., Zhang T. Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 2008. Vol. 93. No. 031907.

71. Lewandowski J.J., Shazly M., Shamimi A., Nouri. Intrinsic and extrinsic toughness of bulk metallic glasses. Scripta Mater. 2007. Vol. 54. P. 337—341.

72. Khonik S.V., Granato A.V., Joncich D.M., Pompe A., Khonik V.A. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses. Phys. Rev. Lett. 2006. Vol. 100. No. 065501.

73. Lind M.L., Duan G., Johnson W.L. Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy. Phys. Rev. Lett. 2006. Vol. 97. No. 015501.

74. Lewandowski J.J. Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass. Mater. Trans. JIM. 2001. Vol. 42. P. 633—637.

75. Johnson W.L., Samwer K.A. Universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 2005. Vol. 95. No. 195501.

76. Demetriou M.D., Harmon J.S., Tao M., Duan G., Samwer K., Johnson W.L. Cooperative shear model for the rheology of glass-forming metallic liquids. Phys. Rev. Lett. 2006. Vol. 97. No. 065502.

77. Cheng Y.Q., Cao A.J., Ma E. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 2009. Vol. 57. P. 3253—3267.

78. Lewandowski J.J., Wang W.H., Greer A.L. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 2005. Vol. 85. P. 77—87.

79. Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. Nanocrystal formation in light metallic glasses at heating and deformation. Rev. Adv. Mater. Sci. 2016. Vol. 46. Р. 53—69.

80. Ketov S.V. Sun Y.H., Nachum S., Lu Z., Checchi A., Beral-din A.R., Bai H.Y., Wang W.H., Louzguine-Luzgin D.V., Carpenter M.A., Greer A.L. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015. Vol. 524. P. 200—203.

81. Ding J., Patinet S., Falk M. L., Cheng Y., Ma E. Soft spots and their structural signature in a metallic glass. Proc. Natl. Acad. Sci. USA. 2014. Vol. 111. P. 14052—14056.

82. Vinogradov A., Lazarev A., Louzguine-Luzgin D.V., Yokoya-ma Y., Li S., Yavari A.R., Inoue A. Propagation of shear bands in metallic glasses and transition from serrated to non-serrated plastic flow at low temperatures. Acta Mater. 2010. Vol. 58. No. 20. P. 6736—6743.

83. Yu H.B., Wang W.H., Zhang J.L., Hong Shek C.H. Bai Y. Statistic analysis of the mechanical behavior of bulk metallic glasses. Adv. Eng. Mater. 2009. Vol. 11. P. 370—375.

84. Wright W.J., Schwarz R.B., Nix W.D. Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A. 2001. Vol. 319-321. P. 229—232.

85. Yokoyama Y., Fujita K., Yavari A.R., Inoue A. Malleable hypoeutectic Zr—Ni—Cu—Al bulk glassy alloys with tensile plastic elongation at room temperature. Philos. Mag. Lett. 2009. Vol. 89. P. 322—334.

86. Yokoyama Y., Tokunaga H., Yavari A.R., Kawamata T., Yamasaki T., Fujita K., Sugiyama K., Liaw P.K., Inoue A. Tough hypoeutectic Zr-based bulk metallic glasses. Metall. Mater. Trans. A. 2011. Vol. 42. P. 1468—1475.

87. Inoue A., Wang Z., Louzguine-Luzgin D.V., Han Y., Kong F.L., Shalaan E., Al-Marzouki F. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. J. Alloys and Comp. 2015. Vol. 638. P. 197—203.

88. Chen N., Louzguine-Luzgin D.V., Xie G.Q., Wada, Inoue A. Influence of minor Si addition on the glass-forming ability and mechanical properties of Pd40Ni40P20 alloy. Acta Mater. 2009. Vol. 57. P. 2775—2780.

89. Brothers A.H., Dunand D.C. Plasticity and damage in cellular amorphous metals. Acta Mater. 2005. Vol. 53. P. 4427—4440.

90. Inoue A., Wada T., Louzguine-Luzgin D.V. Improved mechanical properties of bulk glassy alloys containing spherical pores. Mater. Sci. Eng. A. 2007. Vol. 471. P. 144—150.

91. Oak J.J., Louzguine-Luzgin D.V., Inoue A. Investigation of glass-forming ability, deformation and corrosion be-havior of Ni-free Ti-based BMG alloys designed for application as dental implants. Mater. Sci. Eng. C. 2009. Vol. 29. P. 322—327.

92. Glezer A.M., Zaichenko S.G., Plotnikova M.R. Nature of nanocrystallization in shear bands created by megaplas-tic deformation in amorphous alloys. Bull. RAS. Physics. 2012. Vol. 76. P. 54—60.

93. Inoue A., Zhang T., Chen M. W., Sakurai T., Saida J., Mat-sushita M. Ductile quasicrystalline alloys. Appl. Phys. Lett. 2000. Vol. 76. P. 967—969.

94. Louzguine-Luzgin D.V., Vinogradov A., Xie G., Li S., Laza-rev A., Hashimoto S., Inoue A. High-strength and ductile glassy-crystal Ni—Cu—Zr—Ti composite exhibiting stress-induced martensitic transformation. Philos. Mag. Lett. 2009. Vol. 89. P. 2887—2901.

95. Churyumov A.Yu., Bazlov A.I., Solonin A.N., Zadorozhnyi V.Yu., Xie G.Q., Li S., Louzguine-Luzgin D.V. Structure and mechanical properties of Ni—Cu—Ti—Zr composite materials with amorphous phase. Phys. Met. Metallograph. 2013. Vol. 114. P. 773—778.

96. Tsarkov A.A., Churyumov A.Y., Zadorozhnyy V.Y., Louzguine-Luzgin D.V. High-strength and ductile (Ti—Ni) — (Cu—Zr) crystalline/amorphous composite materials with superelasticity and TRIP effect. J. Alloys Comp. 2016. Vol. 658. P. 402—407.

97. Wu Y., Xiao Y., Chen G., Liu C.T., Lu Z. Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 2010. Vol. 22. P. 2270—2273.

98. Hofmann D.C. Shape memory bulk metallic glass composites. Science. 2010. Vol. 329. P. 1294—1295.

99. Pauly S., Gorantla S., Wang G., Kühn U., Eckert J. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 2010. Vol. 9. P. 473—477.

100. Hofmann D.C., Suh J.Y., Wiest A., Duan G., Lind M.L., Demetriou M.D., Johnson W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature. 2008. Vol. 451. P. 1085—1090.

101. Louzguine-Luzgin D.V., Yokoyama Y., Xie G., Abe N., Inoue A. Transmission electron microscopy investigation of the structure of a welded Zr<sub>50</sub>Cu<sub>30</sub>Ni<sub>10</sub>Al<sub>10</sub> glassy alloy sample. Philos. Mag. Lett. 2007. Vol. 87. P. 549—554.

102. Kawamura Y., Shibata Т., Inoue A. and Masumoto T. Super-plastic deformation of Zr<sub>65</sub>Al<sub>10</sub>Ni<sub>10</sub>Cu<sub>15</sub> metallic glass. Scripta Mater. 1997. Vol. 37. P. 431—436.

103. Chen N., Yang H.A., Caron A., Chen P.C., Lin Y.C., Louzguine-Luzgin D.V., Yao K.F., Esashi M., Inoue A. Glassforming ability and thermoplastic formability of a Pd<sub>40</sub>Ni<sub>40</sub>Si<sub>4</sub>P<sub>16</sub> glassy alloy. J. Mater. Sci. Vol. 46. Nо. 7. P. 2091—2096. 104. Pang S., Zhang T., Asami K. Inoue A. Bulk glassy Ni(Co—)Nb—Ti—Zr alloys with high corrosion resistance and high strength. Mater. Sci. Eng. A. 2004. Vol. 375. P. 368—371.

104. Oak J.J., Louzguine-Luzgin D.V., Inoue A. Investigation of glass-forming ability, deformation and corrosion be-havior of Ni-free Ti-based BMG alloys designed for application as dental implants. Mater. Sci. Eng. C. 2009. Vol. 29. P. 322—327.

105. Zaichenko S.G., Perov N.S., Glezer A.M. Low-temperature thermo-cycling of FINEMET and metglas amorphous alloys: last achievements in theory and experiments. J. ASTM Int. Amer. Soc. Test. Mater. 2010. Vol. 7. No. 102479.

106. Makino A., Kubota T., Chang C., Makabe M., Inoue A. Fe-metalloids bulk glassy alloys with high fe content and high glass-forming ability. J. Mater. Res. 2008. Vol. 23. P. 1339.

107. Shen B., Inoue A. Bulk Glassy Fe—Ga—P—C—B—Si Alloys with high glass-forming ability, high saturation magnetization and good soft magnetic properties. Mater. Trans. 2002. Vol. 43. P. 1235—1239.

108. Inoue A., Shen B., Koshiba H., Kato H., Yavari A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater. 2003. Vol. 2. P. 661—663.

109. Makino A., Inoue A., Mizushima T. Soft magnetic properties of Fe-based bulk amorphous alloys. Mater. Trans. 2000. Vol. 41. P. 1471—1477.

110. Song D.S., Kim J.H., Fleury E., Kim W.T., Kim D.H. Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe—Nb—B—Y system. J. Alloys Compd. 2005. Vol. 389. P. 159—164.

111. Makino A., Kubota T., Chang C.T., Makabe M., Inoue A. FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness. J. Magn. Magn. Mater. 2008. Vol. 320. P. 2499—2503.

112. Shen B.L., Chang C.T., Inoue A. Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)—B—Si—Nb bulk glassy alloys. Intermetallics. 2007. Vol. 15. P. 9—16.

113. Ashby M.F., Greer A.L. Metallic glasses as structural ma-terals. Scripta Mater. 2006. Vol. 54. P. 321—326.

114. Nishiyama N., Amiya K., Inoue A. Recent progress of bulk metallic glasses for strain-sensing devices. Mater. Sci. Eng. A. 2007. Vol. 79. P. 449—451.

115. Ketov S.V., Inoue A., Kato H., Louzguine-Luzgin D.V. Viscous flow of Cu<sub>55</sub>Zr<sub>30</sub>Ti<sub>10</sub>Co<sub>5</sub> bulk metallic glass in glass-transition and semi-solid regions. Scripta Mater. 2013. Vol. 68. P. 219—222.

116. Nishiyama N., Amiya K., Inoue A. Resent progress of bulk metallic glasses for strain-sending products. J. Non-Cryst. Solids. 2007. Vol. 353. P. 3615—3621.

117. Chen N., Shi X., Witte R., Nakayama K.S., Ohmura K., Wu H.K., Takeuchi A., Hahn H., Esashi M., Gleiter H., Inoue A., Louzguine D.V. A novel Ti-based nanoglass composite with submicron—nanometer-sized hierarchical structures to modulate osteoblast behaviors. J. Mater. Chem. B. 2013. Vol. 1. P. 2568—2574.

118. Zberg B., Uggowitzer P.J., Loffler J.F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Mater. 2009. Vol. 8. P. 887—891.

119. Yu H.J., Wang J.Q., Shi X.T., Louzguine-Luzgin D.V., Wu H.K., Perepezko J.H. Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility. Adv. Funct. Mater. 2013. Vol. 23. P. 4793—4800.

120. Petrzhik M.I., Vakaev P.V., Chueva T.R., Sviridova T.A., Molokanov V.V., Kovneristy Yu.K., Levashov E.A. From bulk metallic glasses to amorphous metallic coatings. J. Metast. Nanocryst. Mater. 2005. Vol. 24-25. P. 101—104.

121. Hara S., Hatakeyama N., Itoh N., Kimura H.M., Inoue A. Hydrogen permeation through amorphous-Zr36−xHfxNi64-alloy membranes. J. Membr. Sci. 2003. Vol. 211. P. 149—156.

122. Yamaura S., Shimpo Y., Okouchi H., Nishida M., Kajita O., Kimura H.M., Inoue A. Hydrogen permeation characteristics of melt-spun Ni—Nb—Zr amorphous alloy membranes. Mater. Trans. 2003. Vol. 44. P. 1885—1890.

123. Wang J.-Q., Liu Y.-H., Chen M.-W., Louzguine-Luzgin D.V., Inoue A., Perepezko J.H. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Sci. Rep. 2012. Vol. 2. 418.

124. Wang J.-Q.,Liu Y.-H., Chen M.-W., Xie G.-Q., Louzguine-LuzginD.V., Inoue A., Perepezko J.H. Rapid degradation of azodye by Fe-based metallic glass powder. Adv. Funct. Mater.2012. Vol. 22. Р. 2567—2570.

125. Trifonov A.S., Lubenchenko A.V., Polkin V.I., Pavolotsky A.B., Ketov S.V., Louzguine-Luzgin D.V. Difference in charge transport properties of Ni—Nb thin films with native and artificial oxide. J. Appl. Phys. 2015. Vol. 117. No. 125704.

126. Louzguine-Luzgin D.V., Ketov S.V., Orava J., Mizukami S. Optically transparent magnetic and electrically conductive Fe—Cr—Zr ultra-thin films. Phys. Status Sol. A. 2014. Vol. 211. No. 5. P. 999—1004.


Рецензия

Для цитирования:


Лузгин Д.В., Полькин В.И. СВОЙСТВА ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ СТЕКОЛ. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2016;(6):71-85. https://doi.org/10.17073/0021-3438-2016-6-71-85

For citation:


Luzgin D.V., Pol'kin V.I. PROPERTIES OF BULK METALLIC GLASSES. Izvestiya. Non-Ferrous Metallurgy. 2016;(6):71-85. (In Russ.) https://doi.org/10.17073/0021-3438-2016-6-71-85

Просмотров: 3584


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)