Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

NICKEL-COBALT CONCENTRATE PRODUCTION UNDER THE PROCESSING OF RHENIUM-CONTAINING HIGH-TEMPERATURE ALLOY

https://doi.org/10.17073/0021-3438-2016-6-42-48

Abstract

The article describes the results of HAS32-VI superalloy electrochemical processing in nitric acid solutions in galvanostatic mode. Experiments were conducted for electrochemical dissolution of HAS32-VI superalloy in galvanostatic mode using nitric acid with a concentration of 100 g/l at different values of anode current density. It is found that this leads to quantitative separation of superalloy HAS32-VI components. The anode slurry is the concentrate of refractory metals – niobium, tantalum, molybdenum and tungsten. Cobalt, rhenium and the principal amount of aluminum, chromium and nickel partially pass into electrolyte. The flow diagram of HAS32-VI superalloy processing was suggested that provides for generation and separation of the principal nickel and cobalt amount at the first stage with the formation of Ni–Co-containing metal sediment.

About the Authors

O. V. Chernyshova
Moscow Technological University
Russian Federation
Cand. Sci. (Tech.), Associate Professor of Department of chemistry and technology of rare and dispersed elements, and nanoscale composite materials


D. K. Kanagatov
Moscow Technological University
Russian Federation
Master’s Student of the Department of chemistry and technology of rare and dispersed elements, and nanoscale composite materials


D. V. Drobot
Moscow Technological University
Russian Federation
Dr. Sci. (Chem.), Prof., Head of the Department of chemistry and technology of rare and dispersed elements, and nanoscale composite materials


References

1. Lutz L.J., Parker S.A., Stephenson J.B. Recycling of сontaminated superalloy scrap via electrochemical processing. TMS Annual Meeting, 1993. P. 1211—1220.

2. Satya Prasad V., Sambasiva Rao A., Prakash U., Ramakrishna Rao V., Krishna Rao P., Krishna M. Gupt. Recycling of superalloy scrap through electro slag remelting. ISIJ Int. 1996. Vol. 36(12). P. 1459—1464. DOI: 10.2355/ isijinternational.36.1459.

3. Ramachandra Rao S.R. Resource recovery and recycling from metallurgical wastes. Elsevier Sci., 2006.

4. Sibley S.F. Flow studies for recycling metal commodities in the United States. Virginia. Reston: US Geological Survey, 2004.

5. Worrell E., Reuter M.A. Handbook of recycling: State-of-the-art for practitioners. Analysts and scientists. Elsevier, 2014.

6. Palant A.A., Bryukvin V.A., Levin A.M., Levchuk O.M. Kompleksnaya elektrokhimicheskaya tekhnologiya pererabotki otkhodov zharoprochnykh nikelevykh splavov, soderzhashchikh renii, vol’fram, tantal, niobii i drugie tsennye metally [Integrated electrochemical technology waste heat-resistant nickel alloys containing rhenium, tungsten, tantalum, niobium and other precious metals]. Metally. 2014. No. 1. P. 25—27.

7. Palant A.A., Bryukvin V.A., Levchuk O.M., Palant A.V., Levin A.M. Sposob elektrokhimicheskoi pererabotki metal-licheskikh otkhodov zharoprochnykh nikelevykh splavov, soderzhashchikh renii [A method of electrochemical processing of metal waste heat-resistant nickel alloys containing rhenium]: Pat. 2401312 (RF). 2010.

8. Stolle V., Olbrich A., Meese-Marktscheffel Ju., Mathy W., Erb M., Nietfeld G., Gille G. Process for electrochemical decomposition of superalloys: Pat. 10155791 (DE). 2003.

9. Krynitz U., Olbrich A., Kumme W., Schloh M. Method for the decomposition and recovery of metallic constituents from superalloys: Pat. 5776329 (USA). 1998

10. Stoller V., Olbrich A., Meese-Marktscheffel Ju., Mathy W., Erb M., Nietfeld G., Gille G. Electrochemical dissolution process for disintegrating superalloy scraps: Pat. 1312686 (EP). 2008.

11. Srivastava R.R., Kim M., Lee J., Jha M.K., Kim B.S. Resource recycling of superalloys and hydrometallurgical challenges. J. Mater. Sci. 2014. Vol. 49. Iss. 14. P. 4671— 4686.

12. Shipachev V.A. Nekotorye tekhnologicheskie priemy vydeleniya i ochistki reniya iz zharoprochnykh splavov [Some technological methods for isolation and purification of rhenium from superalloys]. Khimiya v interesakh ustoichivogo razvitiya. 2012. No. 20. P. 365—368.

13. Palant A.A., Bryukvin V.A., Levchuk O.M. Kompleksnaya elektrokhimicheskaya pererabotka metallicheskikh otkhodov reniisoderzhashchego zharoprochnogo nikelevogo splava v sernokislykh elektrolitakh [Integrated electrochemical processing of metal waste rhenium-containing heat-resistant nickel alloy in sulfuric acid electrolytes]. Elektrometallurgiya. 2010. No. 7. P. 29—33.

14. Petrova A.M, Kasikov A.G., Gromov P.B. Izvlechenie re-niya iz otkhodov slozhnolegirovannykh zharoprochnykh splavov na osnove nikelya [Extraction of rhenium from waste complexly superalloys based on nickel]. Tsvet. metally. 2011. No. 11. P. 39—43.

15. Chernyshova O.V., Drobot D.V., Chernyshov V.I., Makhon’-ko M.V. Sposob izvlecheniya nikelya pri elektrokhimicheskoi pererabotke zharoprochnykh nikelevykh splavov [The method of extraction of nickel in electrochemical processing of heat-resistant nickel alloys]: Pat. 2542182 (RF). 2013.

16. Redden L.D., Greaves J.N. The technical and economic aspects of producing high-purity cobalt and nickel from superalloy scrap utilizing a double-membrane electrolytic cell. Hydrometallurgy. 1992. Vol. 29. Iss. 1-3. Р. 547—565.

17. Malliten I., Kustuch Iu., Scholz V., Müller H. Refining and recycling of the nickel based heat-resistant alloy used in aviation. In: Proc. 3-rd Int. Conf. on Life cycle management (LCM-2007). Zurich, 2007.

18. Gaidarenko O.V., Chernyshov V.I., Chernyshov Yu.I. Sposob izmereniya potentsiala rabochego elektroda elektrokhimicheskoi yacheiki pod tokom [Method of measuring the potential of the working electrode of an electrochemical cell under a current]: Pat. 2106620 (RF). 1998.


Review

For citations:


Chernyshova O.V., Kanagatov D.K., Drobot D.V. NICKEL-COBALT CONCENTRATE PRODUCTION UNDER THE PROCESSING OF RHENIUM-CONTAINING HIGH-TEMPERATURE ALLOY. Izvestiya. Non-Ferrous Metallurgy. 2016;(6):42-48. (In Russ.) https://doi.org/10.17073/0021-3438-2016-6-42-48

Views: 879


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)