Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

ELECTRIC AND THERMAL FIELD MODELING IN ELECTROLYZER WITH LIQUID METAL ELECTRODES

https://doi.org/10.17073/0021-3438-2016-6-14-20

Abstract

The paper uses mathematical modeling to study the influence of molten electrolyte composition and the geometric configuration of the electrolyzer with liquid metal lead electrodes on the spatial distribution of DC and the temperature in the «crucible in crucible» type apparatus considered as a prototype of the device for reprocessing of spent nuclear fuel. It is shown that the calculated model parameters are in good agreement with the experimental data.

About the Authors

A. N. Efremov
IHTE UrB RAS
Russian Federation
Junior Researcher of Radiochemistry laboratory


V. A. Khokhlov
IHTE UrB RAS, Ural Federal University
Russian Federation
Dr. Sci. (Chem.), Prof., Major Researcher of Laboratory of molten salts, IHTE UrB RAS, Prof. of Department of inorganic chemistry, Ural Federal University


S. V. Isupov
IHTE UrB RAS
Russian Federation
Junior Researcher of Laboratory of molten salts


Yu. P. Zaikov
IHTE UrB RAS, UrFU
Russian Federation
Dr. Sci. (Chem.), Prof., Research Supervisor of IHTE UrB RAS, Head of Department «Technology of electrochemical productions», UrFU


References

1. Sakamura Y., Shirai O., Iwai T., Suzuki Y. Distribution behavior of plutonium and americium in LiCl—KCl eutectic. Liquid cadmium systems. J. Alloys and Compounds. 2001. Vol. 321. P. 76—83.

2. Hebditch D., Hanson B., Lewin R., Beetham S., Jenkins J., Sims H. Electrorefining of uranium and electro partitioning of U, Pu, Am, Nd and Ce. In: Proc. of Global 2003 (New Orleans, LA, November 16—20, 2003). P. 1574— 1581.

3. Satoh T., Iwai T., Arai Y. Electrolysis of burn up-simulated uranium nitride fuels in LiCl—KCl eutectic melts. J. Nucl. Sci. Technol. 2009. Vol. 46. P. 557—563.

4. Song K, Lee H., Hur J., Kim J., Ahn D., Cho Y. Status of pyroprocessing technology development in Korea. Nucl. Eng. Technol. 2010. Vol. 42. P. 131—144.

5. Koyama T., Sakamura Y., Iizuka M., Kato T., Murakami T., Glatz J.-P. Development of pyro-processing fuel cycle technology for closing actinide cycle. Proc. Chem. 2012. Vol. 7. P. 772—778.

6. Shirai O., Uozumi K., Iwai T., Arai Y. Electrode reaction of the U3+/U couple at liquid Cd and Bi electrodes in LiCl— KCl eutectic melts. Anal. Sci. 2001. Vol. 17. P. i959—i962.

7. Smolenski V., Novoselova A., Osipenko A., Kormilitsyn M., Luk’yanova Ya. Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl—KCl molten salt phases. Electrochim. Acta. 2014. Vol. 133. P. 354—358.

8. Smolenski V., Novoselova A., Osipenko A., Maershin A. Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim. Acta. 2014. Vol. 145. P. 81—85.

9. Omel’chuk A.A. Thin-layered electrolysis in molten electrolytes. Russ. J. Electrochem. 2007. Vol. 43. P. 1007—1015.

10. Delimarskij Yu.K., Zarubitskij O.G. Electroliticheskoe rafinirovanie tyazholyh metallov v ionnyh rasplavah [Electrolytic refining of heavy metals in the ionic melts]. Mos-cow: Metallurgiya, 1975.

11. Delimarskij Yu.K. Teoreticheskie osnovy electroliza ionnyh rasplavov [Fundamentals for a electrolysis of ionic melts]. Moscow: Metallurgiya, 1986.

12. Omel’chuk A.A. Electrorefining of heavy nonferrous metals in molten electrolytes. Russ. J. Electrochem. 2010. Vol. 46. P. 680—690.

13. Efremov A.N., Khalimullina Yu.R., Pershin P.S., Arkhipov P.A., Zaikov Yu.P. Influence of the electrolyte composition on the current distribution in an electrolytic cell with liquid metal electrodes. Russ. Metallurgy (Metally). 2015. No. 2. P. 115—120.

14. Ivanov V.T., Scherbinin S.A., Galimov A.A. Matematicheskoe modelirovanie electroteplomassoperenosa v slozhnyh sistemah [Mathematic modeling of electro, heat and mass transfer in complex systems]. Ufa: BSC UB RAS USSR, 1991.

15. Bessonov L.A. Teoreticheskie osnovy electrotehniki. Elect-romagnitnoe pole [Fundamentals of electrical engineering. An electromagnetic field]. Moscow: Vysshaya shkola, 1978.

16. Segerlind L. Primenenie metoda konechnyh elementov [Application of the finite element method]. Moscow: Mir, 1979.

17. Balkevich V.L. Tehnicheskaya keramika [Technical ceramics: textbook for technical colleges]. Moscow: Stroiizdat, 1984.

18. ASM Metals Handbook. Vol. 1: Properties and selection: irons, steels, and high-performance alloys. 10-th ed. Ohio: ASM International, 1990.

19. Desai P.D., Chu T.K., James H.M., Ho C.Y. Electrical Resistivity of selected elements. J. Phys. Chem. Ref. Data. 1984. Vol. 13. No. 4. P. 1069—1096.

20. Shinno H., Kitajima M., Okada M. Thermal stress analysis of high heat flux materials. J. Nucl. Mater. 1988. Vol. 155—157. P. 290—294.

21. Giordanengo B., Benazzi N., Vinckel J., Gasser J.G., Roubi L. Thermal conductivity of liquid metals and metallic alloys. J. Non-Crystal. Sol. 2000. Vol. 250—252. P. 377—383.

22. Gale W.F., Totemeier T.C. Smithells metals reference book. 8-th ed. Amsterdam: Elsevier, 2004.

23. Iida. T., R.I.L. Guthrie. The physical properties of liquid metals. Oxford: Clarendon Press, 1988.

24. Efremov A.N., Arkhipov P.A., Zaikov Yu.P. Simulation of the electric field in an electrolytic cell with a liquid metal anode. Russ. Metallurgy (Metally). 2013. No. 2. P. 96—99.

25. Levich V.G. Fiziko-khimicheskaya gidrodinamika [Physicochemical hydrodynamics]. Moscow: GIFML, 1959.


Review

For citations:


Efremov A.N., Khokhlov V.A., Isupov S.V., Zaikov Yu.P. ELECTRIC AND THERMAL FIELD MODELING IN ELECTROLYZER WITH LIQUID METAL ELECTRODES. Izvestiya. Non-Ferrous Metallurgy. 2016;(6):14-20. (In Russ.) https://doi.org/10.17073/0021-3438-2016-6-14-20

Views: 617


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)