Effect of alloying with a second components on the biocompatibility and mechanical properties of Ti–Mo alloys
https://doi.org/10.17073/0021-3438-2025-4-62-76
Abstract
This paper presents the results of a study on two titanium-based alloys — Ti–10wt.%Mo and Ti–15wt.%Mo — aimed at assessing their potential for use as base materials in implantable medical devices for osteosynthesis. The alloy samples were examined in three conditions: as-fabricated, after annealing at 1000 °C, and after high-pressure torsion. The microstructure of the alloys was analyzed using scanning electron microscopy and X-ray diffraction. The Young’s modulus, microhardness, and nanohardness values were measured, and the effect of the alloys on the viability and surface adhesion of human multipotent mesenchymal stromal cells during in vitro incubation was investigated. Comparative analysis of the obtained results revealed that the annealed Ti–15wt.%Mo alloy sample is the most promising candidate for orthopedic applications, as it exhibits an optimal combination of good biocompatibility, enhanced stimulation of cell adhesion, and relatively low microhardness (283 HV) and Young’s modulus (106 GPa).
Keywords
About the Authors
A. S. GornakovaRussian Federation
Alena S. Gornakova – Cand. Sci. (Phys.-Math.), Senior Researcher
2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432
A. Korneva Surmacz
Poland
Anna Korneva Surmacz – Dr. Sci. (Eng.), Associate Professor
25 Reymonta Str., Krakow 30-059, Poland
K. M. Novruzov
Russian Federation
Keryam Mursali oglu Novruzov – Laboratory Assistant Researcher, Laboratory of Cellular Immunity
24 Kashirskoye Highway, Moscow 115522
D. G. Shaisultanov
Russian Federation
Dmitry G. Shaisultanov – Cand. Sci. (Eng.), Head of the Laboratory, Department of Materials Science and Technology
3 Lotsmanskaya Str., Saint Petersburg 190121
N. S. Afonikova
Russian Federation
Natalia S. Afonikova – Cand. Sci. (Phys.-Math.), Senior Researcher
2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432
B. B. Straumal
Russian Federation
Boris B. Straumal – Dr. Sci. (Phys.-Math.), Head of the Laboratory, Leading Researcher
2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432
A. I. Tyurin
Russian Federation
Alexander I. Tyurin – Cand. Sci. (Phys.-Math.), Associate Professor, Senior Researcher
33 Internatsionalnaya Str., Tambov 392000
V. A. Tyurin
Russian Federation
Vladimir A. Tyurin – Engineer
33 Internatsionalnaya Str., Tambov 392000
G. S. Davdian
Russian Federation
Grigorii S. Davdian – Postraduate Student, Junior Researcher
2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432
1 Bld, 4 Leninskiy Prosp., Moscow 119049
References
1. Chen Q., Thouas G.A. Metallic implant biomaterials. Materials Science and Engineering R. 2015;(87): 1—57. http://dx.doi.org/10.1016/j.mser.2014.10.001
2. Kolli R.P., Devaraj A. A review of metastable beta titanium alloys. Metals. 2018;8(7):506. http://dx.doi.org/10.3390/met8070506
3. Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review. Progress in Materials Science. 2009;54(3):397—425. http://dx.doi.org/10.1016/j.pmatsci.2008.06.004
4. Kaur M., Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C. 2019;102: 844—862. https://doi.org/10.1016/j.msec.2019.04.064
5. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti—Mo alloys. Biomaterials. 1999;20(22):2115—2122. http://doi.org/10.1016/S0142-9612(99)00114-3
6. Zhou Y.-L., Luo D.-M. Microstructures and mechanical properties of Ti—Mo alloys cold-rolled and heat treated. Materials Characterization. 2011;62(10):931—937. http://doi.org/10.1016/j.matchar.2011.07.010
7. Zhao X., Niinomi M., Nakai M., Hieda J. Beta type Ti—Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomaterialia. 2012;8(5): 1990—1997. http://doi.org/10.1016/j.actbio.2012.02.004
8. Moshokoa N., Raganya L., Obadele B.A., Machaka R., Makhatha M.E. Microstructural and mechanical properties of Ti—Mo alloys designed by the cluster plus glue atom model for biomedical application. The International Journal of Advanced Manufacturing Technology. 2020;111:1237—1246. https://doi.org/10.1007/s00170-020-06208-7
9. Asl M.S., Delbari S.A., Azadbeh M., Namini A.S., Mehrabian M., Nguyen V.-H., Le Q.V., Shokouhimehr M., Mohammadi M. Nanoindentational and conventional mechanical properties of spark plasma sintered Ti—Mo alloys. Journal of Materials Research and Technology. 2020;9(5):10647—10658. https://doi.org/10.1016/j.jmrt.2020.07.066
10. Verestiuc L., Spataru M.-C., Baltatu M.S., Butnaru M., Solcan C., Sandu A.V., Voiculescu I., Geanta V., Vizureanu P. New Ti—Mo—Si materials for bone prosthesis applications. Journal of the Mechanical Behavior of Biomedical Materials. 2021;113:104198. https://doi.org/10.1016/j.jmbbm.2020.104198
11. Edalati K., Ahmed A.Q., Akrami S., Ameyama K., Aptukov V., Asfandiyarov R.N., Ashida M., Astanin V., Bachmaier A., Beloshenko V., Bobruk E.V., Bryła K., Cabrera J.M., Carvalho A.P., Chinh N.Q., Choi I.C., Chulist R., Cubero-Sesin J.M., Davdian G., Demirtas M., Zhu Y.T. Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review. Journal of Alloys and Compounds. 2024;1002:174667. https://doi.org/10.1016/j.jallcom.2024.174667
12. Edalati K., Matsubara E., Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metallurgical and Materials Transactions A. 2009; 40:2079—2086. http://doi.org/10.1007/s11661-009-9890-5
13. Gornakova A.S., Korneva A., Tyurin A.I., Afonikova N.S., Kilmametov A.R., Straumal B.B. Omega phase formation and mechanical properties of Ti—1.5 wt.% Mo and Ti—15 wt.% Mo alloys after high-pressure torsion. Processes. 2023;11(1):221. https://doi.org/10.3390/pr11010221
14. Straumal B.B., Kilmametov A.R., Ivanisenko Yu., Mazilkin A.A., Valiev R.Z., Afonikova N.S., Gornakova A.S., Hahn H. Diffusive and displacive phase transitions in Ti—Fe and Ti—Co alloys under high pressure torsion. Journal of Alloys and Compounds. 2018;735:2281—2286. https://doi.org/10.1016/j.jallcom.2017.11.317
15. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science. 2000;45(2):103—189. https://doi.org/10.1016/S0079-6425(99)00007-9
16. Straumal B.B., Kogtenkova O.A., Gornakova A.S., Khorosheva M.A., Straumal P.B., Prokofiev P.A., Bradai D., Kilmametov A.R. Competition between the formation and decomposition of a solid solution in Al—Cu alloys under high-pressure torsion. JETP Letters. 2025;121:619—624. https://doi.org/10.1134/S0021364025605822
17. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008;53(6):893—979. https://doi.org/10.1016/j.pmatsci.2008.03.002
18. Gatina S.A. Phase transformations and mechanical properties of a pseudo-β-alloy Ti–15Mo subjected to intensive plastic deformation: Dis. Cand. Sci (Eng.). Ufa: Ufa State Aviation Technical Univercity, 2016. (In Russ.).
19. Korneva A., Straumal B., Kilmametov A., Gondek Ł., Wierzbicka-Miernik A., Litynska-Dobrzynska L., Cios G., Chulist R., Zieba P. Thermal stability and microhardness of metastable ω-phase in the Ti—3.3at.%Co alloy subjected to high pressure torsion. Journal of Alloys and Compounds. 2020;834:155132. https://doi.org/10.1016/j.jallcom.2020.155132
20. Korneva A., Straumal B., Kilmametov A., Gornakova A., Wierzbicka-Miernik A., Lityńska-Dobrzyńska L., Chulist R., Gondek Ł., Cios G., Zięba P. Omega phase formation in Ti—3wt.%Nb alloy induced by high-pressure torsion. Materials. 2021;14(9):2262. https://doi.org/10.3390/ma14092262
21. Rogachev S.O., Nikulin S.A., Khatkevich V.M., Sundeev R.V., Komissarov A.A. Features of structure formation in layered metallic materials processed by high pressure torsion. Metallurgical and Materials Transactions A. 2020;51:1781—1788. https://doi.org/10.1007/s11661-020-05654-y
22. Anisimova N., Kiselevskiy M., Martynenko N., Straumal B., Willumeit-Römer R., Dobatkin S., Estrin Yu. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity. Journal of Biomedical Materials Research. Part B: Applied Biomaterials. 2020;108(1): 167—173. https://doi.org/10.1002/jbm.b.34375
23. Milanov N.O., Startseva O.I., Istranov A.L., Mel’nikov D.V., Zakharenko A.S. Prospects of clinical application of stem cells of adipose tissue in plastic surgery and regenerative medicine. Pirogov Russian Journal of Surgery. 2014;(4):70—76. (In Russ.). https://www.mediasphera.ru/issues/khirurgiya-zhurnal-im-n-i-pirogova/2014/4/downloads/ru/030023-12072014416
Review
For citations:
Gornakova A.S., Korneva Surmacz A., Novruzov K.M., Shaisultanov D.G., Afonikova N.S., Straumal B.B., Tyurin A.I., Tyurin V.A., Davdian G.S. Effect of alloying with a second components on the biocompatibility and mechanical properties of Ti–Mo alloys. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):62-76. https://doi.org/10.17073/0021-3438-2025-4-62-76
JATS XML




























