Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of alloying with a second components on the biocompatibility and mechanical properties of Ti–Mo alloys

https://doi.org/10.17073/0021-3438-2025-4-62-76

Abstract

This paper presents the results of a study on two titanium-based alloys — Ti–10wt.%Mo and Ti–15wt.%Mo — aimed at assessing their potential for use as base materials in implantable medical devices for osteosynthesis. The alloy samples were examined in three conditions: as-fabricated, after annealing at 1000 °C, and after high-pressure torsion. The microstructure of the alloys was analyzed using scanning electron microscopy and X-ray diffraction. The Young’s modulus, microhardness, and nanohardness values were measured, and the effect of the alloys on the viability and surface adhesion of human multipotent mesenchymal stromal cells during in vitro incubation was investigated. Comparative analysis of the obtained results revealed that the annealed Ti–15wt.%Mo alloy sample is the most promising candidate for orthopedic applications, as it exhibits an optimal combination of good biocompatibility, enhanced stimulation of cell adhesion, and relatively low microhardness (283 HV) and Young’s modulus (106 GPa).

About the Authors

A. S. Gornakova
Osipyan Institute of Solid State Physics of the Russian Academy of Sciences
Russian Federation

Alena S. Gornakova – Cand. Sci. (Phys.-Math.), Senior Researcher

2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432



A. Korneva Surmacz
Aleksander Krupkowski Institute of Metallurgy and Materials Science of the Polish Academy of Sciences
Poland

Anna Korneva Surmacz – Dr. Sci. (Eng.), Associate Professor

25 Reymonta Str., Krakow 30-059, Poland



K. M. Novruzov
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russia
Russian Federation

Keryam Mursali oglu Novruzov – Laboratory Assistant Researcher, Laboratory of Cellular Immunity

24 Kashirskoye Highway, Moscow 115522



D. G. Shaisultanov
Saint Petersburg Marine Technical University
Russian Federation

Dmitry G. Shaisultanov – Cand. Sci. (Eng.), Head of the Laboratory, Department of Materials Science and Technology

3 Lotsmanskaya Str., Saint Petersburg 190121



N. S. Afonikova
Osipyan Institute of Solid State Physics of the Russian Academy of Sciences
Russian Federation

Natalia S. Afonikova – Cand. Sci. (Phys.-Math.), Senior Researcher

2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432



B. B. Straumal
Osipyan Institute of Solid State Physics of the Russian Academy of Sciences
Russian Federation

Boris B. Straumal – Dr. Sci. (Phys.-Math.), Head of the Laboratory, Leading Researcher

2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432



A. I. Tyurin
Tambov State University n.a. G.R. Derzhavin
Russian Federation

Alexander I. Tyurin – Cand. Sci. (Phys.-Math.), Associate Professor, Senior Researcher

33 Internatsionalnaya Str., Tambov 392000



V. A. Tyurin
Tambov State University n.a. G.R. Derzhavin
Russian Federation

Vladimir A. Tyurin – Engineer

33 Internatsionalnaya Str., Tambov 392000



G. S. Davdian
Osipyan Institute of Solid State Physics of the Russian Academy of Sciences; National University of Science and Technology “MISIS”
Russian Federation

Grigorii S. Davdian – Postraduate Student, Junior Researcher

2 Akademik Osipyan Str., Chernogolovka, Moscow Region 142432

1 Bld, 4 Leninskiy Prosp., Moscow 119049



References

1. Chen Q., Thouas G.A. Metallic implant biomaterials. Materials Science and Engineering R. 2015;(87): 1—57. http://dx.doi.org/10.1016/j.mser.2014.10.001

2. Kolli R.P., Devaraj A. A review of metastable beta titanium alloys. Metals. 2018;8(7):506. http://dx.doi.org/10.3390/met8070506

3. Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review. Progress in Materials Science. 2009;54(3):397—425. http://dx.doi.org/10.1016/j.pmatsci.2008.06.004

4. Kaur M., Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C. 2019;102: 844—862. https://doi.org/10.1016/j.msec.2019.04.064

5. Ho W.F., Ju C.P., Chern Lin J.H. Structure and properties of cast binary Ti—Mo alloys. Biomaterials. 1999;20(22):2115—2122. http://doi.org/10.1016/S0142-9612(99)00114-3

6. Zhou Y.-L., Luo D.-M. Microstructures and mechanical properties of Ti—Mo alloys cold-rolled and heat treated. Materials Characterization. 2011;62(10):931—937. http://doi.org/10.1016/j.matchar.2011.07.010

7. Zhao X., Niinomi M., Nakai M., Hieda J. Beta type Ti—Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomaterialia. 2012;8(5): 1990—1997. http://doi.org/10.1016/j.actbio.2012.02.004

8. Moshokoa N., Raganya L., Obadele B.A., Machaka R., Makhatha M.E. Microstructural and mechanical properties of Ti—Mo alloys designed by the cluster plus glue atom model for biomedical application. The International Journal of Advanced Manufacturing Technology. 2020;111:1237—1246. https://doi.org/10.1007/s00170-020-06208-7

9. Asl M.S., Delbari S.A., Azadbeh M., Namini A.S., Mehrabian M., Nguyen V.-H., Le Q.V., Shokouhimehr M., Mohammadi M. Nanoindentational and conventional mechanical properties of spark plasma sintered Ti—Mo alloys. Journal of Materials Research and Technology. 2020;9(5):10647—10658. https://doi.org/10.1016/j.jmrt.2020.07.066

10. Verestiuc L., Spataru M.-C., Baltatu M.S., Butnaru M., Solcan C., Sandu A.V., Voiculescu I., Geanta V., Vizureanu P. New Ti—Mo—Si materials for bone prosthesis applications. Journal of the Mechanical Behavior of Biomedical Materials. 2021;113:104198. https://doi.org/10.1016/j.jmbbm.2020.104198

11. Edalati K., Ahmed A.Q., Akrami S., Ameyama K., Aptukov V., Asfandiyarov R.N., Ashida M., Astanin V., Bachmaier A., Beloshenko V., Bobruk E.V., Bryła K., Cabrera J.M., Carvalho A.P., Chinh N.Q., Choi I.C., Chulist R., Cubero-Sesin J.M., Davdian G., Demirtas M., Zhu Y.T. Severe plastic deformation for producing superfunctional ultrafine-grained and heterostructured materials: An interdisciplinary review. Journal of Alloys and Compounds. 2024;1002:174667. https://doi.org/10.1016/j.jallcom.2024.174667

12. Edalati K., Matsubara E., Horita Z. Processing pure Ti by high-pressure torsion in wide ranges of pressures and strain. Metallurgical and Materials Transactions A. 2009; 40:2079—2086. http://doi.org/10.1007/s11661-009-9890-5

13. Gornakova A.S., Korneva A., Tyurin A.I., Afonikova N.S., Kilmametov A.R., Straumal B.B. Omega phase formation and mechanical properties of Ti—1.5 wt.% Mo and Ti—15 wt.% Mo alloys after high-pressure torsion. Processes. 2023;11(1):221. https://doi.org/10.3390/pr11010221

14. Straumal B.B., Kilmametov A.R., Ivanisenko Yu., Mazilkin A.A., Valiev R.Z., Afonikova N.S., Gornakova A.S., Hahn H. Diffusive and displacive phase transitions in Ti—Fe and Ti—Co alloys under high pressure torsion. Journal of Alloys and Compounds. 2018;735:2281—2286. https://doi.org/10.1016/j.jallcom.2017.11.317

15. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science. 2000;45(2):103—189. https://doi.org/10.1016/S0079-6425(99)00007-9

16. Straumal B.B., Kogtenkova O.A., Gornakova A.S., Khorosheva M.A., Straumal P.B., Prokofiev P.A., Bradai D., Kilmametov A.R. Competition between the formation and decomposition of a solid solution in Al—Cu alloys under high-pressure torsion. JETP Letters. 2025;121:619—624. https://doi.org/10.1134/S0021364025605822

17. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science. 2008;53(6):893—979. https://doi.org/10.1016/j.pmatsci.2008.03.002

18. Gatina S.A. Phase transformations and mechanical properties of a pseudo-β-alloy Ti–15Mo subjected to intensive plastic deformation: Dis. Cand. Sci (Eng.). Ufa: Ufa State Aviation Technical Univercity, 2016. (In Russ.).

19. Korneva A., Straumal B., Kilmametov A., Gondek Ł., Wierzbicka-Miernik A., Litynska-Dobrzynska L., Cios G., Chulist R., Zieba P. Thermal stability and microhardness of metastable ω-phase in the Ti—3.3at.%Co alloy subjected to high pressure torsion. Journal of Alloys and Compounds. 2020;834:155132. https://doi.org/10.1016/j.jallcom.2020.155132

20. Korneva A., Straumal B., Kilmametov A., Gornakova A., Wierzbicka-Miernik A., Lityńska-Dobrzyńska L., Chulist R., Gondek Ł., Cios G., Zięba P. Omega phase formation in Ti—3wt.%Nb alloy induced by high-pressure torsion. Materials. 2021;14(9):2262. https://doi.org/10.3390/ma14092262

21. Rogachev S.O., Nikulin S.A., Khatkevich V.M., Sundeev R.V., Komissarov A.A. Features of structure formation in layered metallic materials processed by high pressure torsion. Metallurgical and Materials Transactions A. 2020;51:1781—1788. https://doi.org/10.1007/s11661-020-05654-y

22. Anisimova N., Kiselevskiy M., Martynenko N., Straumal B., Willumeit-Römer R., Dobatkin S., Estrin Yu. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity. Journal of Biomedical Materials Research. Part B: Applied Biomaterials. 2020;108(1): 167—173. https://doi.org/10.1002/jbm.b.34375

23. Milanov N.O., Startseva O.I., Istranov A.L., Mel’nikov D.V., Zakharenko A.S. Prospects of clinical application of stem cells of adipose tissue in plastic surgery and regenerative medicine. Pirogov Russian Journal of Surgery. 2014;(4):70—76. (In Russ.). https://www.mediasphera.ru/issues/khirurgiya-zhurnal-im-n-i-pirogova/2014/4/downloads/ru/030023-12072014416


Review

For citations:


Gornakova A.S., Korneva Surmacz A., Novruzov K.M., Shaisultanov D.G., Afonikova N.S., Straumal B.B., Tyurin A.I., Tyurin V.A., Davdian G.S. Effect of alloying with a second components on the biocompatibility and mechanical properties of Ti–Mo alloys. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):62-76. https://doi.org/10.17073/0021-3438-2025-4-62-76

Views: 18

JATS XML

ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)