High-entropy Fe–Co–Cr–Ni–(Cu) coatings with enhanced corrosion and tribocorrosion resistance obtained by vacuum electrospark deposition
https://doi.org/10.17073/0021-3438-2024-3-87-96
Abstract
High-entropy coatings are highly promising for protecting steel parts in coastal and marine infrastructure from corrosion and tribocorrosion. This study examines the properties of medium- and high-entropy Fe–Co–Cr–Ni–(Cu) coatings produced by vacuum electrospark deposition. The coatings, with thicknesses of up to 30 μm and varying copper content, exhibit a single-phase solid solution structure with an FCC lattice and a dense, homogeneous morphology. The addition of 14 at.% Cu was found to enhance corrosion resistance, shifting the corrosion potential to 100 mV. In friction conditions within artificial seawater, the inclusion of copper also improved tribocorrosion properties, raising the corrosion potential during friction to –165 mV. This improvement is attributed to the galvanic deposition of dissolved copper on the worn areas of the coating, which also reduces the friction coefficient from 0.37 to 0.26. The Fe–Co–Cr–Ni–(Cu) coatings demonstrate high wear resistance, ranging from 5.6 to 9.6·10–6 mm3/(N·m). The findings confirm the potential of these coatings for applications in environments subject to both friction and corrosion.
Keywords
About the Authors
М. N. FatykhovaRussian Federation
Mariya N. Fatykhova – Cand. Sci. (Eng.), Junior Researcher of the Scientific-Educational Center of SHS (SHS-Center) of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
K. A. Kuptsov
Russian Federation
Konstantin A. Kuptsov – Cand. Sci. (Eng.), Senior Researcher of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
A. N. Sheveyko
Russian Federation
Aleksanr N. Sheveyko – Researcher of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
A. R. Gizatullina
Russian Federation
Alfina R. Gizatullina – Research Assistant of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
P. A. Loginov
Russian Federation
Pavel A. Loginov – Cand. Sci. (Eng.), Senior Lecturer of the Department of Powder Metallurgy and Functional Coating; Senior Research Scientist of the Laboratory “In situ Diagnostics of Structural Transformations” of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
D. V. Shtansky
Russian Federation
Dmitriy V. Shtansky – Dr. Sci. (Phys.-Math.), Head of the Research Center “Inorganic Nanomaterials”; Chief Researcher of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
References
1. Lu Z., Mao Y., Ren S., Pu J., Fu Z., Fan X., Gao S., Fan J. A novel design of VAlTiCrCu/WC alternate multilayer structure to enhance the mechanical and tribo-corrosion properties of the high-entropy alloy coating. Materials Characterization. 2021;176:111115. https://doi.org/10.1016/J.MATCHAR.2021.111115
2. Kuruvila R., Kumaran S.T., Khan M.A., Uthayakumar M. A brief review on the erosion-corrosion behavior of engineering materials. Corrosion Reviews. 2018;36:435—447. https://doi.org/10.1515/CORRREV-2018-0022/HTML
3. Feng Z., Huang J., Guo H., Zhang X., Li Y., Fang B., Li Y., Song G.L., Liu J. A magnetic “Band-Aid” incorporated with Fe3O4 NPs modified epoxy binder for in-situ repair of organic coating under seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;676:132317. https://doi.org/10.1016/J.COLSURFA.2023.132317
4. Liu Z.X., Li Y., Xie X.H., Qin J., Wang Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceramics International. 2021;47:25655—25663. https://doi.org/10.1016/J.CERAMINT.2021.05.291
5. Usta O., Korkut E. Prediction of cavitation development and cavitation erosion on hydrofoils and propellers by Detached Eddy Simulation. Ocean Engineering. 2019;191:106512. https://doi.org/10.1016/J.OCEANENG.2019.106512
6. Shao T., Ge F., Dong Y., Li K., Li P., Sun D., Huang F. Microstructural effect on the tribo-corrosion behaviors of magnetron sputtered CrSiN coatings. Wear. 2018; (416-417):44—53. https://doi.org/10.1016/J.WEAR.2018.10.001
7. Niu D., Zhang X., Sui X., Shi Z., Lu X., Wang C., Wang Y., Hao J., Tailoring the tribo-corrosion response of (CrNbTiAlV)CxNy coatings by controlling carbon content. Tribology International. 2023;179:108179. https://doi.org/10.1016/J.TRIBOINT.2022.108179
8. Ma Y., Li Y., Wang F. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment. Corrosion Science. 2010; 52: 1796—1800. https://doi.org/10.1016/j.corsci.2010.01.022
9. Wang D., Luo H., Zhao S., Tan J., Liang X., Yang J., Zhou S. Seawater-triggered self-renewable amphiphilic coatings with low water swelling and excellent biofilm prevention properties. Progress in Organic Coatings. 2013;175:107351. https://doi.org/10.1016/J.PORGCOAT.2022.107351
10. Zhang X., Yu Y., Li T., Wang L., Qiao Z., Liu Z., Liu W. Effect of the distribution of Cu on the tribo-corrosion mechanisms of CoCrFeNiCu0.3 high-entropy alloys. Tribology International. 2024;193:109401. https://doi.org/10.1016/J.TRIBOINT.2024.109401
11. Wu P., Gan K., Yan D., Fu Z., Li Z. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corrosion Science. 2021;183:109341. https://doi.org/10.1016/J.CORSCI.2021.109341
12. Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Bondarev A. V., Ignatov S.G., Slukin P. V., Dwivedi P., Fraile A., Polcar T., Shtansky D. V. High-entropy Fe—Cr— Ni—Co—(Cu) coatings produced by vacuum electrospark deposition for marine and coastal applications. Surface and Coatings Technology. 2023;453:129136. https://doi.org/10.1016/J.SURFCOAT.2022.129136
13. Liu Z., Cui T., Chen Y., Dong Z. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion. Bioelectrochemistry. 2023;152:108412. https://doi.org/10.1016/j.bioelechem.2023.108412
14. Zeng Y., Yan W., Shi X., Yan M., Shan Y., Yang K. Enhanced bio-corrosion resistance by Cu alloying in a micro-alloyed pipeline steel. Acta Metall Sin Engl Lett. 2022;35(10):1731—1743. https://doi.org/10.1007/s40195-022-01392-9
15. Shi Y., Yang B., Liaw P. Corrosion-resistant high-entropy alloys: A review. Metals. 2017;7(2):43. https://doi.org/10.3390/met7020043
16. Zhang C., Lu X., Zhou H., Wang Y., Sui X., Shi Z.Q., Hao J. Construction of a compact nanocrystal structure for (CrNbTiAlV)Nx high-entropy nitride films to improve the tribo-corrosion performance. Surface and Coatings Technology. 2022;429:127921. https://doi.org/10.1016/J.SURFCOAT.2021.127921
17. Shon Y., Joshi S.S., Katakam S., Shanker Rajamure R., Dahotre N.B. Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior. Materials Letters. 2015;142:122—125. https://doi.org/10.1016/J.MATLET.2014.11.161
18. Jin G., Cai Z., Guan Y., Cui X., Liu Z., Li Y., Dong M., Zhang D. High temperature wear performance of lasercladded FeNiCoAlCu high-entropy alloy coating. Applied Surface Science. 2018;445:113—122. https://doi.org/10.1016/J.APSUSC.2018.03.135
19. Li Q.H., Yue T.M., Guo Z.N., Lin X. Microstructure and corrosion properties of alcocrfeni high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2013;44: 1767—1778. https://doi.org/10.1007/S11661-012-1535-4/FIGURES/15
20. An Z., Jia H., Wu Y., Rack P.D., Patchen A.D., Liu Y., Ren Y., Li N., Liaw P.K. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters. 2015;3:203—209. https://doi.org/10.1080/21663831.2015.1048904
21. Sheveyko A.N., Kuptsov K.A., Kiryukhantsev-Korneev P.V., Levashov E.A., Shtansky D.V. Hybrid technology combining electrospark alloying, cathodic arc evaporation and magnetron sputtering for hard wear-resistant coating deposition. Powder Metallurgy аnd Functional Coatings. 2018;4:92—103. (In Russ.). https://doi.org/10.17073/1997-308X-2018-4-92-103
22. Sheveyko A.N., Kuptsov K.A., Antonyuk M.N., Bazlov A.I., Shtansky D.V. Electro-spark deposition of amorphous Fe-based coatings in vacuum and in argon controlled by surface wettability. Materials Letters. 2022;318:132195. https://doi.org/10.1016/J.MATLET.2022.132195
Review
For citations:
Fatykhova N., Kuptsov K.A., Sheveyko A.N., Gizatullina A.R., Loginov P.A., Shtansky D.V. High-entropy Fe–Co–Cr–Ni–(Cu) coatings with enhanced corrosion and tribocorrosion resistance obtained by vacuum electrospark deposition. Izvestiya. Non-Ferrous Metallurgy. 2024;(3):87-96. https://doi.org/10.17073/0021-3438-2024-3-87-96