Obtaining lithium carbonate from the black mass of lithium-ion batteries
https://doi.org/10.17073/0021-3438-2024-3-34-44
Abstract
The article explores the possibility of obtaining lithium carbonate from the black mass – an intermediate product of lithium-ion batteries recycling. X-ray phase analysis and inductively coupled plasma atomic emission spectrometry of the black mass revealed that it contains 3 % lithium. It has been established that during water leaching, 40 % to 70 % of lithium can be selectively extracted from the black mass into the aqueous phase at L/S ratios ranging from 10 to 200. During water leaching, kinetic curves were recorded at temperatures of 25 °C and 80 °C. To remove Al ions from the leaching solution, we studied the sorption of aluminate ions on weaky basic (AN-31, CRB05) and strongly basic (A500) anion exchangers under static conditions using a model Li–Al solution. It was demonstrated that in an alkaline environment, strongly basic anion exchangers with quaternary amino groups are not able to adsorb Al ions, while AN-31 and CRB05 with hydroxyl clusters in their functional groups have a capacity of 2 to 3 g/dm3 in terms of aluminum ions. The sorption of aluminum from the model Li–Al solution was conducted under dynamic conditions using the CRB05 anion exchanger (N-methylglucamine) at specific flow rates of 2 and 4 column volumes per hour. Elution sorption curves were plotted, and both the dynamic exchange capacity and the total dynamic exchange capacity were determined. Additionally, we showed that aluminum ions can be removed by sorption so that their residual concentration in the raffinate drops below 0.5 mg/dm3. Sorption purification of the solution after water leaching of the black mass was performed using a weaky basic anion exchanger Diaion CRB05 and a chelate cation exchanger Purolite S950. After evaporation of the purified solution, we obtained lithium carbonate with a main substance content of 98.2 %.
About the Authors
S. A. AleynikovRussian Federation
Sergey A. Aleynikov – Postgraduate Student of the Department of non-ferrous metals
79 Svobodny Prosp., Krasnoyarsk 660041
N. V. Belousova
Russian Federation
Natalya V. Belousova – Dr. Sci. (Chem.), Professor, Head of the Department of Non-Ferrous Metals
79 Svobodny Prosp., Krasnoyarsk 660041
References
1. Sarkarov R.A., Belan S.I., Guseinov N.M. Assessment of the current state and prospects for the production of lithium and its compounds in Russia. Industrial’naya ehkonomika. 2022;1(2):57—68. (In Russ.). https://doi.org/10.47576/2712-7559_2022_2_1_57
2. Mizushima K., Jones P.J., Wiseman J.B., Goodenough J.B. LixCoO2 (0 < x < –1): A new cathode material for batteries of high energy density. Materials Research Bulletin. 1980;15:783—789. https://doi.org/10.1016/0025-5408(80)90012-4
3. Thackeray M.M., Johnson P.J., De Picciotto L.A., Bruce P.G., Goodenough J.B. Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin. 1984;19(2):179—187. https://doi.org/10.1016/0025-5408(84)90088-6
4. Zaghib K., Simoneau, M., Armand M., Gauthier M. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. Journal of Power Sources. 1999;81:300—305. https://doi.org/10.1016/S0378-7753(99)00209-8
5. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the electrochemical society. 1997;144(4):1188. https://doi.org/10.1149/1.1837571
6. Shi P., Li T., Zhang R., Shen X., Cheng X. B., Xu R., Huang X. C. Liu H., Zhang Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Advanced Materials. 2019;31(8):1807131. https://doi.org/10.1002/adma.201807131
7. Aaltonen M., Peng C., Wilson B.P., Lundström M. Leaching of metals from spent lithium-ion batteries. Recycling. 2017;2(4):20. https://doi.org/10.3390/recycling2040020
8. Lie J., Liu J.C. Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent: Ascorbic acid. Separation and Purification Technology. 2021;266:118458. https://doi.org/10.1016/j.seppur.2021.118458
9. Golmohammadzadeh R., Faraji F., Rashchi F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling. 2018;136:418—435. https://doi.org/10.1016/j.resconrec.2018.04.024
10. De Oliveira Demarco J., Cadore J. S., da Silveira de Oliveira F., Tanabe E. H., Bertuol D. A. Recovery of metals from spent lithium-ion batteries using organic acids. Hydrometallurgy. 2019;190:105169. https://doi.org/10.1016/j.hydromet.2019.105169
11. Esmaeili M., Rastegar S.O., Beigzadeh R., Gu T. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere. 2020;254:126670. https://doi.org/10.1016/j.chemosphere.2020.126670
12. Fu Y., He Y., Chen H., Ye C., Lu Q., Li R., Xie W., Wang J. Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant. Journal of Industrial and Engineering Chemistry. 2019;79:154—162. https://doi.org/10.1016/j.jiec.2019.06.023
13. Gao W., Liu C., Cao H., Zheng X., Lin X., Wang H., Zhang Y., Sun Z. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Management. 2018;75:477—485. https://doi.org/10.1016/j.wasman.2018.02.023
14. Urbańska W. Recovery of Co, Li, and Ni from spent Li-ion batteries by the inorganic and/or organic reducer assisted leaching method. Minerals. 2020;10(6):555. https://doi.org/10.3390/min10060555
15. Nayl A.A., Elkhashab R.A., Badawy S.M., El-Khateeb M.A. Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry. 2017;10:S3632—S3639. https://doi.org/10.1016/j.arabjc.2014.04.001
16. Ku H., Jung Y., Jo M., Park S., Kim S., Yang D., Rhee K., An E.M. Sohn J., Kwon K. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of hazardous materials. 2016;313:138—146. https://doi.org/10.1016/j.jhazmat.2016.03.062
17. Gaye N., Gueye R.S., Ledauphin J., Balde M., Seck M., Wele A., Diaw M. Alkaline leaching of metals from cathodic materials of spent lithium-ion batteries. Asian Journal of Applied Chemistry Research. 2019:3(2);1—7. https://doi.org/10.9734/AJACR/2019/v3i230088
18. Kim D., Quang N. D., Hien T. T., Chinh N. D., Kim C., Kim D. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-ion storage capabilities. Electronic Materials Letters. 2017:13(6):505—511. https://doi.org/10.1007/s13391-017-7101-x
19. Wang S.L., Lin C.H., Yan, Y.Y., Wang M.K. Synthesis of Li/Al LDH using aluminum and LiOH. Applied Clay Science. 2013;72:191—195. https://doi.org/10.1016/j.clay.2013.02.001
20. Chistyakov A.A., Chirkst D.E., Cheremisina O.V. Sorption of aluminate from alkaline solutions on D-403 anion exchanger. Russian Journal of Physical Chemistry A. 2011:85(11);1995—1999. https://doi.org/10.1134/s0036024411110069
21. Cheremisina O.V., Ponomareva M.A., Sagdiev V.N. Sorption extraction of gallium and aluminum from alkaline solutions on the AN-31 anion-exchange resin. Izvestiya. Non-Ferrous Metallurgy. 2017;(3):56—64. (In Russ.). https://doi.org/10.17073/0021-3438-2017-3-56-64
22. Ramazanov A.Sh., Sveshnikova D.A., Ataev D.R. Kinetics of lithium cation sorption with freshly precipitated aluminum hydroxide from natural brine. Sorbtsionnye i khromatograficheskie protsessy. 2021:21(2):225—234. (In Russ.). https://doi.org/10.17308/sorpchrom.2021.21/3356
23. Jiang H., Yang Y., Sun S., Yu J. Adsorption of lithium ions on lithium-aluminum hydroxides: Equilibrium and kinetics. The Canadian Journal of Chemical Engineering. 2020:98(2);544—555. https://doi.org/10.1002/cjce.23640
24. Zhang H., Yang Y., Ren D., Wang L., He X. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials. 2021;36:147—170. https://doi.org/10.1016/j.ensm.2020.12.027
25. Wajima T., Munakata K., Uda T. Adsorption behavior of lithium from seawater using manganese oxide adsorbent. Plasma and Fusion Research. 2012;7:2405021. https://doi.org/10.1585/pfr.7.2405021
26. Chitrakar R., Kanoh H., Miyai Y., Ooi K. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4. Industrial & Engineering Chemistry Research. 2001:40(9):2054—2058. https://doi.org/10.1021/ie000911h
27. Hossain S.M., Ibrahim I., Choo Y., Razmjou A., Naidu G., Tijing L., Kim J., Shon H.K. Preparation of effective lithium-ion sieve from sludge-generated TiO2. Desalination. 2022;525:115491. https://doi.org/10.1016/j.desal.2021.115491
28. Li X., Chen L., Chao Y., Chen W., Luo J., Xiong J., Zhu F., Chu X., Li H., Zhu W. Amorphous TiO2 — derived large — capacity lithium ion sieve for lithium recovery. Chemical Engineering & Technology. 2020:43(9); 1784—1791. https://doi.org/10.1002/ceat.201900374
29. Volkova T.S., Rudskikh V.V. Study of the possibility of purifying lithium chloride solution to remove impurities by sorption method. Russian Journal of Applied Chemistry. 2019;92(8):1113—1121. https://doi.org/10.1134/S1070427219080093
30. Kiefer R., Höll W.H. Sorption of heavy metals onto selective ion-exchange resins with aminophosphonate functional groups. Industrial & Engineering Chemistry Research. 2001;40(21):4570—4576. https://doi.org/10.1021/ie010182l
31. Milyutin V.V., Nekrasova N.A., Rudskikh V.V., Volkova T.S. Preparation of high-purity lithium carbonate using complexing ion-exchange resins. Russian Journal of Applied Chemistry. 2020;93:549—553. https://doi.org/10.1134/S1070427220040096
32. Hertz J.T., Huang Q., McQueen T., Klimczuk T., Bos J.W.G., Viciu L., Cava R.J. Magnetism and structure of LixCoO2 and comparison to NaxCoO2. Physical Review B. 2008;77(7):075119. https://doi.org/10.1103/PhysRevB.77.075119
Review
For citations:
Aleynikov S.A., Belousova N.V. Obtaining lithium carbonate from the black mass of lithium-ion batteries. Izvestiya. Non-Ferrous Metallurgy. 2024;(3):34-44. https://doi.org/10.17073/0021-3438-2024-3-34-44