Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Hydrometallurgical recovery of nickel from oxidized ores

https://doi.org/10.17073/0021-3438-2024-3-25-33

Abstract

A significant portion of the world’s reserves of Ni-containing raw materials (40–66 %) is concentrated in oxidized nickel ores. One of the alternatives to the high-cost pyrometallurgical and ammonia-carbonate methods for processing such ores could be the chlorammonium recovery of nickel from relatively low-grade ores. The halide-ammonia decomposition and recovery technology of nickel from oxidized nickel ores, supplemented by a sorption process, is less stage-intensive and simpler in practical implementation. Nickel adsorption recovery is feasible using carbon sorbents that exhibit high chemical stability, withstand high-temperature exposure, and strong acidic treatment. Sorbents were obtained through steam-gas activation of extracted carbonizates from fossil coals. The sorption capacity for Ni(II) ions was studied, and the patterns and characteristic parameters of the process on carbon sorbents were identified using adsorption isotherms while varying experimental conditions. The experimental results were processed using the Freundlich and Langmuir equations. The sorbents have several distinctive features determined by their predominant microporous structure and multifunctional surface with active complex-forming atomic groups, characteristic of ampholytes with cation- and anion-exchange properties. The adsorption process is described by a pseudo-first-order equation with rate constants ranging from 0.204 to 0.287 s–1. For the adsorption recovery of Ni(II), a scheme with two adsorbers and a pseudo-fluidized sorbent bed is proposed. Nickel desorption and sorbent regeneration were carried out with a 2.3 % sulfuric acid solution, desorbing 95 to 98 % of nickel. Standard chemical machinery and equipment are recommended for these processes. 

About the Authors

V. I. Dudarev
Irkutsk National Research Technical University (INRTU)
Russian Federation

Vladimir I. Dudarev – Dr. Sci. (Eng.), Professor of the Department of Chemistry and Biotechnology named after Prof. V.V. Tuturina

83 Lermontova Str., Irkutsk 664074



G. N. Dudareva
Irkutsk National Research Technical University (INRTU)
Russian Federation

Galina N. Dudareva – Cand. Sci. (Chem.), Associate Professor of the Department of Chemistry and Biotechnology named after Prof. V.V. Tuturina

83 Lermontova Str., Irkutsk 664074



A. A. Yakovleva
Irkutsk National Research Technical University (INRTU)
Russian Federation

Ariadna A. Yakovleva – Dr. Sci. (Eng.), Professor of the Department of Chemistry and Biotechnology named after Prof. V.V. Tuturina

83 Lermontova Str., Irkutsk 664074



References

1. Naftal M.N., Dyachenko V.T., Serova N.V., Bryukvin V.A., Lysykh M.P. Oxidized nickel ores are a promising source of mineral raw materials for increasing the production of nickel and cobalt in LLC MMK Norilsk Nickel. Tsvetnye metally. 2012;6:25—28. (In Russ.).

2. Reznik I.D. , Ermakov G. P., Shneerson Ya.M. Nickel. Vol. 2. Moscow: Nauka i Tekhnologiya, 2001. 468 p. (In Russ.).

3. Kalashnikova M.I. Development of scientific foundations for the creation of new and improvement of existing hydrometallurgical technologies for processing of ore raw materials and intermediate products of copper-nickel production: Abstract of the Dissertation of Dr. Sci. (Eng.). St. Petersburg: SPbSPU, 2007. (In Russ.).

4. Chunarev A.A., Kolmachikhina O.B., Naboychenko S.S. Overview of methods for processing oxidized nickel ores and prospects for the development of nickel production in the Urals. In: Ural industrialny. Bakunin's Readings: Industrial Modernization of the Urals in the XVIII–XXI Centuries: Mater. XII Al-Russian Scientific Conf. (4–5.12.2014). Yekaterinburg, 2014. Vol. 2. P. 333–335. (In Russ.).

5. Kolmachikhina, O.B. Combined technology for processing oxidized nickel ores (on the example of the serovskoye deposit): Diss. ... Cand. Sci. (Eng.). Yekaterinburg, UrFU, 2018. (In Russ.).

6. Andreev A.A., Dyachenko A.N., Kraydenko R.I. Processing of oxidized nickel ores using ammonium chloride. Khimicheskaya tekhnologiya. 2010;11(2): 91—96. (In Russ.).

7. Andreev A.A., Dyachenko A.N., Kraydenko R.I. Chlorammonium technology of processing oxidized nickel ores. Tsvetnye metally. 2011;1:18—21.

8. Dudareva G.N., Irinchinova N.V., Dudarev V.I. Adsorption extraction of nickel (II) from aqueous solutions of technogenic character. Izvestiya vuzov. Prikladnaya khimiya i biotechnologiya. 2020;1(32):133—139. (In Russ.). https://doi.org/10.21285/2227-2925-2020-10-1-133-139

9. Kurdyumov V.R., Timofeev K.L., Maletsev G.I., Lebed A.B. Sorption extraction of nickel (II) and manganese (II) ions from aqueous solutions. Zapiski Gornogo instituta. 2020;242:209. (In Russ.). https://doi.org/10.31897/pmi.2020.2.209

10. Tamjidi S., Esmaeili H., Moghadas B.K. Application of magnetic adsorbents for removal of heavy metals from wastewater: a review study. Materials Research Express. 2019;6(10):862—873. https://doi.org/10.1088/2053-1591/ab3ffb

11. Çelebi H., Gök G., Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead (II), cadmium (II), nickel (II), and zinc (II) heavy metal ions. Scientific Reports. 2020;10(1):12. https://doi.org/10.1038/s41598-020-74553-4

12. Nilgün Onursal, Yalçın Altunkaynak, Ayşe Baran, Mehmet Can Dal. Adsorption of nickel (II) ions from aqueous solutions using Malatya clay: Equilibrium, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy.2017;42(5):14150. https://doi.org/10.1002/ep.14150

13. Olufemi B., Eniodunmo O., Adsorption of nickel (II) ions from aqueous solution using banana peel and coconut shell. International Journal of Technology. 2018;9(3):434—445. https://doi.org/10.14716/ijtech.v9i3.1936

14. Chang Y.S., Au P.I., Mubarak N.M., Khalid M., Jagadish P., Walvekar R., Abdullah E.C. Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Environmental Science and Pollution Research. 2020;27:33270—33296. https://doi.org/10.1007/s11356-020-09423-7

15. Khan M.I., Almesfer M.K., Danish M., Ali I.H., Shoukry H., Patel R., Gardy J., Nizami A.S., Rehan M. Potential of Saudi natural clay as an effective adsorbent in heavy metals removal from wastewater. Desalination and Water Treatment. 2019;158:140—151. https://doi.org/10.5004/dwt.2019.24270

16. Gupta S., Sharma S.K., Kumar A. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Science and Engineering. 2019;12:27—36. https://doi.org/10.1016/j.wse.2019.04.003

17. Islam M.A., Awual M.R., Angove M.J. A review on nickel (II) adsorption in single and binary component systems and future path. Journal of Environmental Chemical Engineering. 2019;7(5):103305. https://doi.org/10.1016/j.jece.2019.103305

18. Shahat A., Hassan M.A. H., El-Shahat M.F., Osama El-Shahawy, Md. Rabiul Awual. Visual nickel (II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chemical Engineering Journal. 2018;334:957—967. https://doi.org/10.1016/j.cej.2017.10.105

19. Praveen P., Munilakshmi N., Sravani P. Removal of nickel (II) ion from an aqueous solution using red brick as an adsorbent. Journal of Solid Waste Technology and Management. 2023;49(2):175—184. https://doi.org/10.5276/jswtm/iswmaw/492/2023.175

20. Mahmoud O. Abd El-Magied, Ali M.A. Hassan, Hamdi M.H. Gad Т.М. Removal of nickel (II) ions from aqueous solutions using modified activated carbon: A kinetic and equilibrium study. Journal of Dispersion Science and Technology. 2018;39(6). https://doi.org/10.1080/01932691.2017.1402337

21. Qasem N.A., Mohammed R.H., Lawal D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021;4(1):1—15. https://doi.org/10.1038/s41545-021-00127-0

22. Leonov S.B., Domracheva V.A., Elshin V.V., Dudarev V.I., Oznobikhin L.M., Randin O.I. Carbon sorbents based on fossil coals. Irkutsk: Irkutsk State Technical University, 2000. 268 p. (In Russ.).

23. Leonov S.B., Elshin V.V., Dudarev V.I., Domracheva V.A. Method of Sorbent Production: Patent 2064335 (RF). 1996. (In Russ.).

24. Dudareva G.N., Randin O.I., Petukhova G.A., Vakul’skaya T.I. On the mechanism of sorption of nickel (II) ions by modified carbon sorbents. Protection of Metals and Physical Chemistry of Surfaces. 2015;51(6):939—943. https://doi.org/10.1134/S2070205115060064

25. Dudareva G.N., Irinchinova N.V., Dudarev V.I., Petukhova G.A. Study of removal of nickel(II) from aqueous solutions by sorption. Protection of Metals and Physical Chemistry of Surfaces. 2019;55(5):841—848. https://doi.org/10.1134/S2070205119050071

26. Dudareva G.N. Sorption concentration and analytical determination of nickel: Monograph. Irkutsk: IRNITU, 2015. 154 p. (In Russ.).

27. Marochkina V.V., Bueva E.I., Kulagina E.S. Comparative analysis of methods for determining chromium, vanadium, copper, nickel, manganese in steels and cast irons by the method of atomic absorption spectrometry with atomization in the flame. Zavodskaya laboratoriya. Diagnostika materialov. 2023; 89(2):57—63. (In Russ.). https://doi.org/10.26896/1028-6861-2023-89-2-II-57-64

28. Frolov Yu.G. Course of the colloid chemistry. Surface phenomena and disperse systems. Moscow: Khimiya, 1989. 462 р. (In Russ.).

29. Tsivadze A.Yu., RusanovA.I., Fomkin A.A.,Voloshchuk A.M., Tovbin Y.K., Tolmachev A.M., Avramenko V.A. Physical chemistry of adsorption phenomena. Moscow: Granitsa, 2011. 302 р. (In Russ.).


Review

For citations:


Dudarev V.I., Dudareva G.N., Yakovleva A.A. Hydrometallurgical recovery of nickel from oxidized ores. Izvestiya. Non-Ferrous Metallurgy. 2024;(3):25-33. https://doi.org/10.17073/0021-3438-2024-3-25-33

Views: 305


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)