Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effectiveness of secondary copper electrolytic refining slime decopperization

https://doi.org/10.17073/0021-3438-2024-3-5-24

Abstract

The relevance of replacing the slime–H2SO4–H2O system used for processing slimes from secondary copper electrolytic refining (SCER) with a slime–NH3·H2O–(NH4)2SO4–H2O system has been substantiated. Comprehensive studies of the characteristics of SCER slime samples were conducted. It was found that about 90 % of the copper is distributed between the Cu2O phase and other phases, with a total copper content of 55.12 %. A new phase, Cu4(OH)6SO4, corresponding to the mineral brochantite, was discovered, with a content in the slime of 6.40 %. Silver, with a concentration of 2.43 % in the slime, is present in metallic form at 69.1 %, with the remainder in the form of AgCl. The contents of associated components PbSO4, BaSO4, and SnO2 are 13.52 %, 9.33 %, and 4.73 %, respectively. To substantiate the feasibility of low-temperature hydrometallurgical opening of the slime components and the conditions necessary for its implementation, determined by the specific qualitative and quantitative compositions of the slime, a thermodynamic analysis of the slime–NH3·H2O–(NH4)2SO4–H2O system was performed. This analysis allowed for the discovery and mathematical description of the dependencies of copper leaching indicators on the composition of the ammonia-ammonium mixture (ammonia buffer). A nomogram for the theoretical calculation of the minimum excess NH3·H2O/NH4+ over the stoichiometrically necessary amount required for the complete formation of the copper ammine complex was constructed according to the equilibrium ammonia-ammonium solution's pH and copper concentration. Thermodynamic calculations determined the optimal composition and consumption of ammonia-ammonium solutions, as well as the characteristics of the leach pulp, such as the concentration of [Cu(NH3)4]2+ and the redox potential. Technological studies demonstrated the possibility of effective and selective extraction of copper from SCER slimes at a rate of no less than 99 % in the slime–NH3·H2O–(NH4)2SO4–H2O system, which was confirmed experimentally. Studies of the kinetics of copper leaching from slime in the slime–NH3·H2O–(NH4)2SO4–H2O system were conducted. The activation energy of the ammonia-ammonium copper leaching process from SCER slime (Ea = 5±0.25 kJ/mol) was determined within the temperature range from 15 to 45 °C at a total buffer system concentration [NH3·H2O] + [NH4+] of 1 and 2 mol/L, as well as the order of reaction at a temperature of 24±1 °C, which is 0.24±0.02 and 0.91±0.05 for [NH3·H2O] + [NH4+] concentrations above 1.5 mol/L and below 1.5 mol/L, respectively. A change in the kinetic mode of leaching with the limitation of the reaction rate by adsorption of reagents on the surface of solid particles to diffusion was detected when the total buffer system concentration [NH3·H2O] + [NH4+] was reduced below 1.5 mol/L. The equation for the formal kinetics of the investigated process in the slime–NH3·H2O–(NH4)2SO4–H2O system was determined.

About the Authors

S. O. Vydysh
National University of Science and Technology “MISIS”
Russian Federation

Stepan O. Vydysh – Postgraduate Student of the Department of Non-Ferrous Metals and Gold

4 Bld. 1 Leninsky Prosp., Moscow 119049



E. V. Bogatyreva
National University of Science and Technology “MISIS”
Russian Federation

Elena V. Bogatyreva – Dr. Sci. (Eng.), Professor of the Department of Non-Ferrous Metals and Gold

4 Bld. 1 Leninsky Prosp., Moscow 119049



References

1. International Copper Study group (Monthly Press Release). Lisbon, 2024. URL: https://icsg.org/pressreleases/# (accessed: 01.03.2024).

2. International Copper Study group (Yearbook Press Release). Lisbon, 2023. URL: https://icsg.org/pressreleases/# (accessed: 01.03.2024).

3. International Copper Study group (The World Copper Factbook 2023). Lisbon, 2023. URL: https://icsg.org/copper-factbook/ (accessed: 01.03.2024).

4. Hunt A.J, Matharu A.S., King A.H., Clark J.H. The importance of elemental sustainability and critical element recovery. Green Chemistry. 2015;17:1949—1950. https://doi.org/10.1039/C5GC90019K

5. Copper Market Analysis: The pathway for copper to 2030. RFC Ambrian, 2022. 30 p.

6. Vanyukov A.V., Utkin N.I. Complex processing of copper and nickel raw materials. Chelyabinsk: Metallurgiya, Chelyabinskoe otdelenie, 1988. 432 p. (In Russ.).

7. Mastyugin S.A., Nabojchenko S.S., Lastochkina M.A. Electrolytic copper refining slimes Ekaterinburg: UrFU, 2013. 258 p. (In Russ.).

8. Schlesinger M.E., Sole K.C., Davenport W.G., Alvear Flores G.R.F. Extractive metallurgy of copper. Sixth edition. Amsterdam: Elsevier Ltd., 2022. 572 p.

9. Adams M.D. Advances in gold ore processing. Amsterdam: Elsevier Ltd., 2005. 1028 p.

10. Tesfaye F., Lindberg D., Hamuyuni J., Taskinen P., Hupa L. Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering. 2017;111:209—221. https://doi.org/10.1016/j.mineng.2017.06.018

11. Cooper W.C. The treatment of copper refinery anode slimes. JOM. 1990;42:45—49. https://doi.org/10.1007/BF03221054

12. Habashi F. Handbook of extractive metallurgy. Vol. II: Primary metals, secondary metals, light metals. Weinheim, 1997.

13. Petrov G.V., Belen’kiy A.M., Andreev Yu.V., Kovalev V.N. Current status and technological prospects for processing electrolytic copper refining slimes. Trudy SPbGTU. 2009;510:70—73. (In Russ.).

14. Lyapishchev Yu.B. Current status of processing electrolytic copper refining slimes. Zapiski Gornogo instituta. 2006;2(167):245—247. (In Russ.).

15. Information and technical guide to the best available technologies ITS 14-2020 “Production of precious metals”. Moscow: Buro NDT, 2020. 153 p. (In Russ.).

16. Chanturia V.A., Shadrunova I.V., Gorlova O.E. Innovative processes of deep and complex processing of technogenic raw materials in the context of new economic challenges. In: Effective technologies for the production of non-ferrous, rare and precious metals: Materials of Int. ScientificPractical Conf. Almaty, 2018. Р. 7–13. (In Russ.).

17. Romanova O.A. Sirotin D.V. Digital support for the metallurgical complex of the Urals in the context of the development of industry 4.0. In: Russian regions in the focus of change: Collection of reports of the XIV Inter. Conf. (Yekaterinburg, November 14–16, 2019). Ekaterinburg: UMC UPI, 2020. Р. 729–732. (In Russ.).

18. Lobanov V.G., Naumov K.D., Korolev A.A. Theory of copper-electrolyte slimes decoppering in the presence of hydrogen peroxide. Materials Science Forum. 2019;946:585—590. https://doi.org/10.4028/www.scientific.net/MSF.946.585

19. Naboychenko S.S., Karelov S.V., Mamyachenkov S.V., Zauzolkov I.V. Processing of copper-containing scrap and waste with complex extraction of non-ferrous metals. Moscow: TsNIITsMEI, 1990. 27 p. (In Russ.).

20. Naboychenko S.S., Smirnov V.I. Hydrometallurgy of copper. Moscow: Metallurgiya, 1974. 272 p. (In Russ.).

21. Lu Benjamin C.-Y., Graydon W.F. Rates of copper dissolution in aqueous ammonium hydroxide solutions. Journal of the American Chemical Society. 1955;77(23):6136—6139. https://doi.org/10.1021/ja01628a012

22. Lane R.W., McDonald H.J. Kinetics of the reaction between copper and aqueous ammonia. Journal of the American Chemical Society. 1946;68(9):1609—1704. https://doi.org/10.1021/ja01213a005

23. Halpern J. Kinetics of the dissolution of copper in aqueous ammonia. Journal of The Electrochemical Society. 1953;100(10):421—428. https://doi.org/10.1149/1.2780873

24. Klein S.E., Karelov S.V., Chemezova T.A., Doroshkevich A.P. Kinetics of oxidation of metallic copper by cupriions in ammonia sulfate solutions. Izvestiya. NonFerrous Metallurgy. 1978;(1):27—31. (In Russ.).

25. Naboychenko S.S., Bogdashev V.F. Kinetics of dissolution of copper-zinc alloys in an ammonia environment at elevated temperatures at elevated temperatures and oxygen pressure. Zhurnal prikladnoi khimii. 1976;49(5):1028—1031. (In Russ.).

26. Naboychenko S.S., Bogdashev V.F., Khudyakov I.F. Study of the kinetics of dissolution of Cu—Sn alloys in sulfuric acid and ammonia solutions at elevated temperatures and oxygen pressure. Izvestiya. Non-Ferrous Metallurgy. 1975;6:35—39. (In Russ.).

27. Batsaikhan Sh., Naboychenko S.S. Indicators of ammonia autoclave leaching of copper polymetallic concentrate. Izvestiya. Non-Ferrous Metallurgy. 1992;(5/6):38—40. (In Russ.).

28. Zheleznova A.N., Ilyin A.A., Ilyin A.P., Smirnov N.N., Komarov Yu.M. Low-temperature oxidation of copper in the process of mechanochemical activation in a steamammonia-oxygen environment. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2013;56(4):43—47. (In Russ.).

29. Meng X., Han K.N. The principles and applications of ammonia leaching of metals: A review. Mineral Processing and Extractive Metallurgy Review. 1996;16:23—61. https://doi.org/10.1080/08827509608914128

30. Voldman G.M., Zelikman A.N. Theory of hydrometallurgical processes: Textbook manual for universities. 4th ed., revised. and additional Moscow: Intermet Engineering, 2003. 464 p. (In Russ.).

31. Lidin R.A., Andreeva L.L., Molochko V.A. Constants of inorganic substances: reference book. Moscow: Drofa, 2008. 685 p. (In Russ.)

32. Medvedev A.S., Bogatyreva E.V. Theory of hydrometallurgical processes: Theory and practice of hydrometallurgical processes underlying the production of nonferrous and rare metals: Textbook. allowance. Moscow: MISIS, 2009. 347 p. (In Russ.).

33. Fainberg S.Yu. Analysis of non-ferrous metal ores. 2nd ed., corrected and additional Moscow: Metallurgizdat, 1953. 832 p. (In Russ.).

34. Piskareva S.K., Barashkov K.M., Olshanova K.M. Analytical chemistry: Textbook for secondary specialized educational institutions. Moscow: Vysshaya shkola, 1994. 384 p. (In Russ.).

35. Lurie, Yu.Yu. Handbook of analytical chemistry. Ed. 4-th, rev. and additional. Moscow: Khimiya, 1971. 456 p. (In Russ.).

36. Zittlau A.H., Shi Q., Boerio-Goates J., Woodfield B.F., Majzlan J. Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Geochemistry. 2013;73(1):39—50. https://doi.org/10.1016/j.chemer.2012.12.002

37. Glinka N.L. General chemistry: Textbook for universities. Leningrad: Khimiya, 1988. 704 p. (In Russ.). .

38. Alekseev V.N. Quantitative analysis. Ed. 4-th. Moscow: Khimiya, 1972. 504 p. (In Russ.).

39. Naboychenko S.S., Ni L.P., Shneerson Ya.M., Chugaev L.V. Autoclave hydrometallurgy of non-ferrous metals. Ekaterinburg: USTU–UPI, 2002. 940 p. (In Russ.).

40. Peretrutov A.A., Petrovsky A.M., Chubenko M.N., Kim P.P., Kalachev N.A., Litova T.V. Inherent properties of ammonia-ammonium aqueous solutions of copper ammonia. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2018;12:219—224. (In Russ.).

41. Groysman A.Sh., Khomutov N.E. Solubility of oxygen in electrolyte solutions. Uspekhi Khimii AN SSSR. 1980;59(8):1217—1250. (In Russ.).

42. Narita E., Lawson F., Han K.N. Solubility of oxygen in aqueous electrolyte solutions. Hydrometallurgy. 1983;10:21—37. https://doi.org/10.1016/0304-386X(83)90074-9

43. Tromans D. Oxygen solubility modelling in ammoniacal leaching solutions: leaching of sulphide concentrates. Minerals Engineering. 2000;13(5):497—515. https://doi.org/10.1016/S0892-6875(00)00031-5

44. Tereshkin V., Fantgof Zh., Grigorieva L. Etching of printed circuit boards and regeneration of etching solutions. Tekhnologii v elektronnoi promyshlennosti. 2007;3:26—29. (In Russ.).

45. Lin P., Werner J., Ali Z.A., Bertuccim L., Groppo J. Kinetics and modeling of counter-current leaching of waste random-access memory chips in a Cu—NH3— SO4 system utilizing Cu(II) as an oxidizer. Materials. 2023;16:6274. https://doi.org/10.3390/ma16186274

46. Habashi F. Fundamentals of applied metallurgy. Vol. 1: Theoretical foundations. Moscow: Metallurgiya, 1975. 231 p. (In Russ.).

47. Targanov I.E. Solodovnikov M.A., Troshkina I.D. Oxidative leaching of rhenium from grinding waste of rhenium-containing superalloys. Izvestiya. Non-Ferrous Metallurgy. 2023;29(5):25—33. (In Russ.). https://doi.org/10.17073/0021-3438-2023-5-25-33

48. Targanov I.E., Troshkina I.D. Kinetics of sulfuric acid leaching of nickel from grinding waste of rheniumcontaining superalloys. Izvestiya. Non-Ferrous Metallurgy. 2021;27(4):24—31. (In Russ.). https://doi.org/10.17073/0021-3438-2021-4-24-31

49. Kurniawan K. Lee J., Kim J., Kim R., Kim S. Leaching kinetics of selenium, tellurium and silver from copper anode slime by sulfuric acid leaching in the presence of manganese(IV) oxide and graphite. Materials Proceedings. 2021;3(1):16. https://doi.org/10.3390/IEC2M-09233

50. Schosseler J. Trentmann A., Frienrich B., Hahn K., Wotruba H. Kinetic investigation of silver recycling by leaching from mechanical pre-treated oxygen-depolarized cathodes containing PTFE and nickel. Metals. 2019;9(2):187. https://doi.org/10.3390/met9020187

51. Shu Q., Zhang J., Yan B., Liu J. Phase formation mechanism and kinetics in solid-state synthesis of undoped and calcium-doped lanthanum manganite. Materials Research Bulletin. 2009;44(3):649—653. https://doi.org/10.1016/j.materresbull.2008.06.022

52. Free M.L. Hydrometallurgy: Fundamentals and applications. USA, NJ: John Wiley & Sons, 2013. 432 p.

53. Voldman G.M. On the use of the Erofeev-Kolmogorov equation to describe the kinetics of heterogeneous processes. Izvestiya. Non-Ferrous Metallurgy. 1973;6:91— 96. (In Russ.).

54. Sun Z., Cao H., Venkatesan P., Jin W., Xiao Y., Sietsma J., Yang Y. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions. Frontiers of Chemical Science and Engineering. 2016;11:308—316. https://doi.org/10.1007/s11705-016-1587-x

55. Habashi F. Kinetics and mechanism of copper dissolution in aqueous ammonia. Berichte der Bunsengesellschaft für physikalische Chemie. 1963;67(4):402—406. https://doi.org/10.1002/bbpc.19630670412

56. Kakovsky I.A., Naboychenko S.S. Thermodynamics and kinetics of hydrometallurgical processes. Alma-Ata: Nauka, 1986. 272 p. (In Russ.).

57. Zembura Z. Piotrowski A., Kolenda Z. A mass transfer model for the autocatalytic dissolution of a rotating copper disc in oxygen saturated ammonia solutions. Journal of Applied Electrochemistry. 1990;20: 365—369. https://doi.org/10.1007/BF01076042

58. Larin V.I., Khobotova E.B., Dobriyan M.A., Datsenko V.V., Pshenichnaya S.V. The process of chemical dissolution of copper in ammonia solutions. Vestnik Khar’kovskogo natsional’nogo universiteta. 2006;731:230— 237. (In Russ.).

59. Ekmekyapar A., Oya R., Kunkul A. Dissolution kinetics of an oxidized copper ore in ammonium chloride solution. Chemical and Biochemical Engineering Quarterly. 2003;17(4):261—266. https://doi.org/10.15255/CABEQ.2014.593

60. Wei L., Tang M., Tang C., He J., Yang S., Yang J. Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. Transactions of Nonferrous Metals Society of China. 2010;20:910—917. https://doi.org/10.1016/S1003-6326(09)60235-1

61. Kunkul A., Muhtar Kocakerim M., Yapici S., Demirbag A. Leaching kinetics of malachite in ammonia solutions. International Journal of Mineral Processing. 1993;41:167— 182. https://doi.org/10.1016/0301-7516(94)90026-4

62. Bingol D., Canbazoglu M., Aydogan S. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching. Hydrometallurgy. 2005;76:55—62. https://doi.org/10.1016/j.hydromet.2004.09.006

63. Peretrutov A.A., Ksandrov N.V., Gagarina T.B., Chubenko M.N., Kim P.P. Thermodynamic and kinetic basis of ammonia-ammonium extraction of zinc and copper compounds from technogenic ones. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Alekseeva. 2013;2:228—236. (In Russ.).


Review

For citations:


Vydysh S.O., Bogatyreva E.V. Effectiveness of secondary copper electrolytic refining slime decopperization. Izvestiya. Non-Ferrous Metallurgy. 2024;(3):5-24. https://doi.org/10.17073/0021-3438-2024-3-5-24

Views: 368


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)