Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Sputtering by inverted magnetrons: influence on the texture and residual stresses in four layer Ta/W/Ta/W coatings

https://doi.org/10.17073/0021-3438-2023-4-48-59

Abstract

The aim of the study is to examine the possibilities of sputtering of multilayer coatings at a high rate of deposition on products of complex shape using inverted magnetrons. The formation of texture and residual stresses in magnetron four-layer Ta/W/Ta/W coatings deposited at voltages from 0 to –200 V on cylindrical and flat copper substrates imitating elements of the surface of complex shape products was evaluated using the X-ray method of inverse pole figures and the sin2Ψ method. The patterns of texture formation in coatings depend mainly on the bias voltage on the substrate (Us), while at Us = –200 V they differ for W and Ta layers. At Us = –100 V, the epitaxial mechanism of texture formation is realized. In the case of a cylindrical substrate, this leads to intense texture (111) of all four layers. In the case of a flat substrate, this can lead to the formation of a single-crystal texture (111) in all layers with a texture maximum width of 12°–14°. The presence of a single-crystal (111) tantalum texture corresponds to the maximum Young moduli and, accordingly, the interatomic bonding forces normal to the coating plane. This suggests that multilayer coatings with an external Ta layer have high tribological characteristics. Increasing the voltage on a flat substrate from 0 to –200 V leads to an increase in residual compressive stresses from 0.5 to 2.7 GPa for the four-layer coating under study.

About the Authors

A. A. Lozovan
Moscow Aviation Institute (National Research University)
Russian Federation

Alexandеr A. Lozovan – Dr. Sci. (Eng.), Professor of the Department 1101

4 Volokolamskiy Prosp., Moscow 125993



S. Ya. Betsofen
Moscow Aviation Institute (National Research University)
Russian Federation

Sergey Ya. Betsofen – Dr. Sci. (Eng.), Professor of the Department 1101

4 Volokolamskiy Prosp., Moscow 125993



A. S. Lenkovets
Moscow Aviation Institute (National Research University)
Russian Federation

Aleksandr S. Lenkovets – Cand. Sci. (Eng.), Senior Lecturer of the Department 1101

4 Volokolamskiy Prosp., Moscow 125993



A. V. Shalin
Moscow Aviation Institute (National Research University)
Russian Federation

Alexey V. Shalin – Cand. Sci. (Eng.), Assistant Professor of the Department 1102

4 Volokolamskiy Prosp., Moscow 125993



N. A. Ivanov
Moscow Aviation Institute (National Research University)
Russian Federation

Nikolai A. Ivanov – Junior Research Scientist of the Department 1101

4 Volokolamskiy Prosp., Moscow 125993



References

1. Dooho Choi, Bincheng Wang, Suk Chung, Xuan Liu, Amith Darbal, Adam Wise, Noel T. Nuhfer, Katayun Barmak. Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films. Journal of Vacuum Science & Technology: A. 2011;29(5):051512. http://dx.doi.org/10.1116/1.3622619

2. Pai Chi-Feng, Liu Luqiao, Li Y., Tseng H.W., Ralph D.C., Buhrman R.A. Spin transfer torque devices utilizing the giant spin hall effect of tungsten. Applied Physics Letters. 2012;101:122404. http://dx.doi.org/10.1063/1.4753947

3. Vüllers F.T.N., Spolenak R. Alpha-vs. Beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials’ properties. Thin Solid Films. 2015;577:26—34. https://doi.org/10.1016/j.tsf.2015.01.030

4. Stelmakh V., Rinnerbauer V., Joannopoulos J.D., Soljačić M., Celanovic I., Senkevich J.J. Evolution of sputtered tungsten coatings at high temperature. Journal of Vacuum Science & Technology: A. 2013;31(6):061505. http://dx.doi.org/10.1116/1.4817813

5. Chargui A., Beainou R.El., Mosset A., Euphrasie S., Potin V., Vairac P., Martin N. Influence of thickness and sputtering pressure on electrical resistivity and elastic wave propagation in oriented columnar tungsten thin films. Nanomaterials. 2020;10(1):81. https://doi.org/10.3390/nano10010081

6. Dutta N.J., Buzarbaruah N., Mohanty S.R. Damage studies on tungsten due to helium ion irradiation. Journal of Nuclear Materials. 2014;452(1-3):51—56. http://dx.doi.org/10.1016/j.jnucmat.2014.04.032

7. Liudas Pranevicius. Magnetron-sputter deposition of W coatings for fusion applications. Materials Science (Medžiagotyra). 2009;15(3):212—219.

8. Esteve J., Zambrano G., Rincon C., Martinez E., Galindo H., Prieto P. Mechanical and tribological properties of tungsten carbide sputtered coatings. Thin Solid Films. 2000;373(1—2):282—286. https://doi.org/10.1016/S0040-6090(00)01108-1

9. Nygren R.E., Raffray R., Whyte D., Urickson M.A., Baldwin M., Snead L.L. Making tungsten work— ICFRM-14 session T26 paper 501. Journal of Nuclear Materials. 2011;417(1-3):451—456. https://doi.org/10.1016/j.jnucmat.2010.12.289

10. Smid I., Akiba M., Vieider G., Plöchl L.. Development of tungsten armor and bonding to copper for plasmainteractive components. Journal of Nuclear Materials. 1998;258-263(1):160—172. https://doi.org/10.1016/S0022-3115(98)00358-4

11. Dias M., Mateus R., Catarino N., Franco N., Nunes D., Correia J. B., Carvalho P. A., Hanada K., Sarbu C., Al-ves E. Synergistic helium and deuterium blistering in tungsten—tantalum composites. Journal of Nuclear Materials. 2013;442(1-3):69—74. https://doi.org/10.1016/j.jnucmat.2013.08.010

12. Colin J.J., Abadias G., Michel A., Jaouen C. On the origin of the metastable b-Ta phase stabilization in tantalum sputtered thin films. Acta Materialia. 2017;126:481—493. https://doi.org/10.1016/j.actamat.2016.12.030

13. Gladczuk L., Patel A., Paur C.S., Sosnowski M. Tantalum films for protective coatings of steel. Thin Solid Films. 2004;467(1-2):150—157. https://doi.org/10.1016/j.tsf.2004.04.041

14. Lee S.L., Windover D., Lub T.-M., Audino M. In situ phase evolution study in magnetron sputtered tantalum thin films. Thin Solid Films. 2002;420-421:287—294. https://doi.org/10.1016/S0040-6090(02)00941-0

15. Lin J., Moore J.J., Sproul W.D., Lee S.L., Wang J. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering. IEEE Transactions on Plasma Science. 2010;38(11):3071—3078. https://doi.org/10.1109/TPS.2010.2068316

16. Navid A.A., Hodge A.M. Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure. Materials Science and Engineering: A. 2012;536:49—56. https://doi.org/10.1016/j.msea.2011.12.017

17. Myers S., Lin J., Souza R.M., Sproul W.D., Moore J.J. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering. Surface & Coatings Technology. 2014;214:38—45. https://doi.org/10.1016/j.surfcoat.2012.10.061

18. Fritze S., Hans M., Riekehr L. Osinger B., Lewin E., Schneider J.M., Jansson U. Influence of carbon on microstructure and mechanical properties of magnetron sputtered TaW coatings. Materials and Design. 2020;196:109070. https://doi.org/10.1016/j.matdes.2020.109070

19. Konuru S.L.K., Umasankar V., Sarma A. Deposition of tungsten—tantalum composite coating on RAFM steel by sputtering deposition process. Fusion Engineering and Design. 2020;160:111972. https://doi.org/10.1016/j.fusengdes.2020.111972

20. Konuru S.L.K., Umasankar V., Sarma A. Development and characterisation of W and W—25%Ta composite coatings on steel material. Journal of Surface Science and Technology. 2020;36(3-4):103—108. https://doi.org/10.18311/jsst/2020/20109

21. Emmerlich J., Mráz S., Snyders R., Jiang K., Schneider J.M. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering. Vacuum. 2008;82(8):867—870. https://doi.org/10.1016/j.vacuum.2007.10.011

22. Thornton J.A., Hedgcoth V.L. Tubular hollow cathode sputtering onto substrates of complex shape. Journal of Vacuum Science & Technology. 1975;12: 93—97. https://doi.org/10.1116/1.568631

23. Lozovan A.A., Lenkovets A.S., Ivanov N.A., Alexandrova S.S., Kubatina E.P. System of inverted magnetrons for the formation of multilayer composites on axisymmetric small-sized substrates. Journal of Physics: Conference Series. 2018;1121:012020. https://doi.org/10.1088/1742-6596/1121/1/012020

24. Lozovan A.A, Betsofen S.Ya., Lenkovets A.S., Grushin I.A., Labutin A.A., Pavlov Yu.S. Research of the effect of bias voltage on the morphology, structure and lattice spacings of the Nb coatings deposited by inverted magnetron. Journal of Physics: Conference Series. 2018;1121:012019. https://doi.org/10.1088/1742-6596/1121/1/012019

25. Шалин Р.Е., Светлов И.Л., Качанов Е.Б., Толораия В.Н., Гаврилин О.С. Монокристаллы никелевых жаропрочных сплавов. М.: Машиностроение, 1997. 336 с.

26. Betsofen S.Yа., Lozovan A.A., Lenkovets A.S., Labutin A.A., Grushin I.A. Texture and residual stresses in Mo, Nb, and Nb/Mo magnetron coatings. Russian Metallurgy (Metally). 2021;(7): 883—891. https://doi.org/10.1134/S0036029521070028


Review

For citations:


Lozovan A.A., Betsofen S.Ya., Lenkovets A.S., Shalin A.V., Ivanov N.A. Sputtering by inverted magnetrons: influence on the texture and residual stresses in four layer Ta/W/Ta/W coatings. Izvestiya. Non-Ferrous Metallurgy. 2023;(4):48-59. https://doi.org/10.17073/0021-3438-2023-4-48-59

Views: 294


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)