Effect of high-energy ball milling on the microstructure, phase composition and microhardness of the Al–Mn–Cu alloy
https://doi.org/10.17073/0021-3438-2022-3-68-76
Abstract
X-ray diffraction and scanning electron microscopy methods were used to study the effect of the planetary ball mill treatment time on the morphology, phase composition and microstructure of the Al–Mn–Cu-based alloy granules with and without nanodiamond particles. The phase composition of the alloy was determined by X-ray diffraction after casting and milling for 5–20 h. It was shown that nanodiamond particles promote granule coarsening, and this is especially noticeable with an increase in the milling time up to 20 h. At the same time, the size of initial alloy granules weakly depends on the processing time. Cu-bearing phases of crystallization origin dissolve during mechanical alloying. The lattice constant of the aluminum solid solution decreases after 5-hour treatment to 0.4028–0.4030 nm, and increases with further increasing milling time. Exothermic effects associated with the precipitation of secondary phases were revealed for mechanically alloyed granules during heating. An increase in the milling time reduces the intensity of peaks. The solidus temperature of samples decreased after mechanical alloying. For the nanodiamond-bearing sample, an exothermic effect is observed which can be ascribed to the aluminum carbide formation or oxidation reactions in nanodiamond particles. The maximum microhardness is achieved after 5–10 h of mechanical alloying, and the nanodiamond particles slightly increase the maximum microhardness from 316 to 330 HV. The results indicate the dissolution of copper and manganese in the aluminum solid solution after 5 h of treatment and their precipitation with the increasing milling time. Nanodiamond particles have no effect on the dissolution of elements but accelerate the solid solution decomposition with the increasing treatment time.
Keywords
About the Authors
O. A. YakovtsevaRussian Federation
Candidate of Technical Sciences, assistant
Department of "Metallology of non-ferrous metals"
Moscow
A. S. Prosviryakov
Russian Federation
Candidate of Technical Sciences, Senior Researcher
laboratory of ultrafine-grained metallic materials
Moscow
V. V. Cheverikin
Russian Federation
Candidate of Technical Sciences, leading researcher
Department of "Metallology of non-ferrous metals"
Moscow
E. N. Zanaeva
Russian Federation
Candidate of Technical Sciences, educational master, researcher
Department of "Metallology of non-ferrous metals"
Moscow
A. V. Mikhaylovskaya
Russian Federation
Candidate of Technical Sciences, Associate Professor
Department of "Metallology of non-ferrous metals"
Moscow
References
1. Darling K. A., Roberts A. J., Armstrong L., Kapoor D., Tschopp M. A., Kecskes L. J., Mathaudhu S. N. Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al—Mn alloys. Mater. Sci. Eng. A. 2014. Vol. 589. P. 57—65.
2. Konopatsky A. S., Yusupov K. U., Corthay S., Matveev A. T., Kovalskii A. M., Shtansky D. V. High-strength aluminum-based composite materials reinforced by microstructures and nanostructures (mini review). Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 6. P. 720—729.
3. Шалунов Е. П. Жаропрочные материалы на основе порошкового алюминиевого сплава для армирования поршней форсированных двигателей / Е. П. Шалунов, И. В. Архипов // Вестн. Чуваш. ун-та. – 2012. – No. 3. – С. 244—251 / Shalunov E. P., Arkhipov I. V. Heat-resistant materials based on powder aluminum alloys for reinforcement of the forced engines pistons. Vestnik Chuvashskogo Universiteta. 2012. No. 3. P. 244—251 (In Russ.).
4. Просвиряков А. С. Механическое легирование алюминиевого сплава частицами наноалмаза / А. С. Просвиряков // Известия вузов. Порошковая металлургия и функциональные покрытия. – 2013. – No. 4. – C. 45—50 / Prosviryakov A. S. Mechanical alloying of aluminum alloy with nanodiamond particles. Russ. J. Non-Ferr. Met. 2015. No. 56 (1). P. 92—96.
5. Shechtman D., Schaefer R. J., Biancaniello F. S. Precipitation in rapidly solidified Al—Mn alloys. Metall. Trans. A. Phys. Metall. Mater. Sci. 1984. Vol. 15 A. No. 11. P. 1987—1997.
6. Eckert J., Schultz L., Urban K. Compositional dependence of quasicrystal formation in mechanically alloyed Al—Cu—Mn. J. Less Common Met. 1990. Vol. 167. No. 1. P. 143—152.
7. Darling K. A., Roberts A. J., Catalano J. E., Tschopp M. A., Kecskes L. J. Effect of processing parameters on the microstructure of mechanically alloyed nanostructured Al—Mn alloys. In: Advanced composites for aerospace, marine, and land applications II. Springer, Cham., 2015. P. 3—11. https://doi.org/10.1007/978-3-319-48141-8_1.
8. Murty B. S., Ranganathan S. Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 1998. Vol. 43. No. 3. P. 101—141.
9. Rofman O. V., Prosviryakov A. S., Kotov A. D., Bazlov A. I., Milovich P. O., Karunakaran G., Mikhaylovskaya A. V. Fabrication of AA2024/SiCp metal matrix composite by mechanical alloying. Met. Mater. Int. (Korean Institute of Metals and Materials). 2021. Vol. 28. No. 3. P. 811—822.
10. Sharifi H., Borujeni H. R., Nasresfahani M. R. The influence of volume fraction of SiC particles on the properties of Al/SiCp nanocomposites produced by powder metallurgy with high energy ball milling. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 7. P. 728—733.
11. Иванов Д. А. Изучение механизма разрушения алюмоматричного дисперсно-упрочненного композиционного материала Al—Al<sub>4</sub>C<sub>3</sub> —Al<sub>2</sub>O<sub>3</sub> со слоистой структурой при статическом и ударном нагружениях / Д. А. Иванов, С. Д. Шляпин, Г. Е. Вальяно // Известия вузов. Порошковая металлургия и функциональные покрытия. – 2020. – No. 4. – C. 66—75. https://doi.org/10.17073/1997-308X-2020-4-66-75 / Ivanov D. A., Shlyapin S. D., Valiano G. E. Mechanism of destruction of the Al— Al<sub>4</sub>C<sub>3</sub> —Al<sub>2</sub>O<sub>3</sub> alumo-matrix dispersion-hardened composite material with a layered structure on static and shock loading. Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Powder Metallurgy аnd Functional Coatings). 2020. No. 4. P. 66—75 (In Russ.). https://doi.org/10.17073/1997-308X-2020-4-66-75.
12. Rofman O. V., Mikhaylovskaya A. V., Kotov A. D., Mochugovskiy A. G., Mohamed A. K., Cheverikin V. V., Short M. P. AA2024/SiC metal matrix composites simultaneously improve ductility and cracking resistance during elevated temperature deformation. Mater. Sci. Eng. A. 2020. Vol. 790. P. 139697.
13. Esquivel J., Wachowiak M. G., O’Brien S. P., Gupta R. K. Thermal stability of nanocrystalline Al—5at.%Ni and Al—5at.%V alloys produced by high-energy ball milling. J. Alloys Compd. 2018. Vol. 744. P. 651—657.
14. Kim G. H., Kim H. S., Kum D. W. Determination of titanium solubility in alpha-aluminum during high energy milling. Scr. Mater. 1996. Vol. 34. No. 3. P. 421—428.
15. Li F., Ishihara K. N., Shingu P. H. The formation of metastable phases by mechanical alloying in the aluminum and copper system. Metall. Trans. A. 1991. Vol. 22. No. 12. P. 2849—2854.
16. Esquivel J., Gupta R. K. Influence of the V content on microstructure and hardness of high-energy ball milled nanocrystalline Al—V alloys. J. Alloys Compd. 2018. Vol. 760. P. 63—70.
17. Eckert J., Schultz L., Urban K. Quasicrystal formation and phase transitions by ball milling. Mater. Sci. Eng. A. 1991. Vol. 133. P. 393—397.
18. Prosviryakov A. S., Shcherbachev K. D., Tabachkova N. Y. Investigation of nanostructured Al—10wt.%Zr material prepared by ball milling for high temperature applications. Mater. Charact. 2017. Vol. 123. P. 173—177.
19. Rofman O. V., Prosviryakov A. S., Mikhaylovskaya A. V., Kotov A. D., Bazlov A. I., Cheveriki V. V. Processing and microstructural characterization of metallic powders produced from chips of AA2024 alloy. JOM. 2019. Vol. 71. No. 9. P. 2986—2995.
20. Popov V. A., Prosviryakov A. S., Sagalova T., Többens D., Kiryukhantsev-Korneev Ph. Use of mechanical alloying for production of aluminium matrix composites with non-agglomerated nanodiamond reinforcing particles. Acta Phys. Pol., A. 2014. Vol. 126. P. 1008—1011.
21. Nayak S. S., Pabi S. K., Murty B. S. Al—(L12)Al3Ti nanocomposites prepared by mechanical alloying: Synthesis and mechanical properties. J. Alloys Compd. 2010. Vol. 492. No.1—2. P. 128—133.
22. Prosviryakov A., Bazlov A., Pozdniakov A., Emelina N. Low-cost mechanically alloyed copper-based composite reinforced with silicate glass particles for thermal applications. JOM. 2019. Vol. 71. No. 3. P. 995—1001.
23. Prosviryakov A. S., Shcherbachev K. D. Strengthening of mechanically alloyed Al-based alloy with high Zr contents. Mater. Sci. Eng. A. 2018. Vol. 713. P. 174—179.
24. Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001. Vol. 46. No. 1—2. P. 1—184.
Review
For citations:
Yakovtseva O.A., Prosviryakov A.S., Cheverikin V.V., Zanaeva E.N., Mikhaylovskaya A.V. Effect of high-energy ball milling on the microstructure, phase composition and microhardness of the Al–Mn–Cu alloy. Izvestiya. Non-Ferrous Metallurgy. 2022;(3):68-76. (In Russ.) https://doi.org/10.17073/0021-3438-2022-3-68-76