Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of parameters used for melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites

https://doi.org/10.17073/0021-3438-2022-3-30-37

Abstract

   The paper focuses on establishing the effect of nanosecond electromagnetic pulses (NEPs) with different amplitudes on the formation of the structure of cast aluminum matrix composites of the Al–Mg2Si pseudobinary system with hypoeutectic (5 wt. % Mg2Si) and hypereutectic (15 wt. % Mg2Si) compositions. As the NEP generator amplitude in composites containing 5 and 15 wt. % Mg2Si increases, the matrix alloy structural components (α-solid solution and eutectic) are refined, while no significant differences in the sizes and morphology of Mg2Si primary crystals were observed in the hypereutectic range of compositions. Presumably, the observed nature of the NEP effect on the structure of composites in the hypereutectic region of compositions is associated with the features of their crystallization behavior. The temperature range of the L + Mg2Si two-phase region presence is much lower than NEP irradiation temperatures. Apparently, this is the reason why NEPs have no effect on the thermodynamic state of Mg2Si primary crystal/melt interfaces. It was shown that a promising option for the simultaneous modifying effect on all structural components of Al–Mg2Si aluminum matrix composites (solid solution, eutectic, Mg2Si primary particles) is a combination of thermal-rate treatment and irradiation of melts by NEPs, as well as additional melt processing by NEPs during crystallization.

About the Authors

V. B. Deev
Wuhan Textile University; National University of Science and Technology «MISIS»
China

Doctor of Technical Sciences, Professor, Chief Researcher, Professor of the Department

Faculty of Mechanical Engineering and Automation

laboratory "Ultrafine-grained metal materials"

Department of "Metal processing by pressure"

430073

Textile Road, 1, Hongshan District 

Wuhan

Russia

119991

Leninsky Ave., 4

Moscow



E. Kh. Ri
Pacific National University
Russian Federation

Doctor of Technical Sciences, Professor, Chief Researcher, Head of the Department

Department of Foundry Production and Technology of Metals (LPiTM)

680035

136 Pacific Street

Khabarovsk



E. S. Prusov
Vladimir State University n. a. A. G. and N. G. Stoletovs
Russian Federation

Candidate of Technical Sciences, Associate Professor

Department of "Technologies of functional and structural materials"

600000

87 Gorky Street

Vladimir



M. A. Ermakov
Pacific National University
Russian Federation

Candidate of Technical Sciences, senior researcher, Associate Professor

Department of Foundry production and Technology of Metals

Khabarovsk



E. D. Kim
Pacific National University
Russian Federation

Candidate of Technical Sciences, teacher

Department of Foundry production and Technology of Metals

Khabarovsk



References

1. Mortensen A., Llorca J. Metal matrix composites. Annu. Rev. Mater. Res. 2010. Vol. 40. Iss. 1. P. 243—270. DOI: 10.1146/annurev-matsci-070909-104511.

2. Rohatgi P. K., Ajay Kumar P., Chelliah N. M., Rajan T. P. D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. No. 8. P. 2912—2926. DOI: 10.1007/s11837-020-04253-x.

3. Mavhungu S. T., Akinlabi E. T., Onitiri M. A., Varachia F. M. Aluminum matrix composites for industrial use: Advances and trends. Procedia Manuf. 2017. Vol. 7. P. 178—182. DOI: 10.1016/j.promfg.2016.12.045.

4. Georgatis E., Lekatou A., Karantzalis A. E., Petropoulos H., Katsamakis S., Poulia A. Development of a cast Al—Mg<sub>2</sub>Si—Si in situ composite: Microstructure, heat treatment, and mechanical properties. J. Mater. Eng. Perform. 2013. Vol. 22. P. 729—741.

5. Moharami A., Razaghian A., Babaei B. Role of Mg<sub>2</sub> Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al—Mg 2 Si composite. DOI: 10.1177/0021998320925528.

6. Liu Z., Xie M., Liu X. M. Microstructure and properties of insitu Al—Si—Mg<sub>2</sub> Si composite prepared by melt superheating. Appl. Mech. Mater. 2011. Vol. 52. P. 750—754. DOI: 10.4028/www.scientific.net/AMM.52-54.750.

7. Nordin N. A., Farahany S., Ourdjini A., Abu Bakar T. A., Hamzah E. Refinement of Mg<sub>2</sub> Si reinforcement in a commercial Al—20%Mg<sub>2</sub>Si insitu composite with bismuth, antimony and strontium. Mater. Charact. 2013. Vol. 86. P. 97—107.

8. Si Y., Kevluzov D. S. Research on the long-lasting and remelting properties of Nd modification effect on cast Al—Mg<sub>2</sub> Si metal matrix composite. Mater. Sci. Forum. 2020. Vol. 1001. P. 196—201. DOI: 10.4028/www.scientific.net/msf.1001.196.

9. Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J. The study of Li on the microstructure and tensile properties of cast Al—Mg 2 Si metal matrix composite. J. Alloys Compd. 2011. Vol. 509. P. 9026—9033.

10. Zhao Y. G., Qin Q. D., Zhou W., Liang Y. H. Microstructure of the Cemodified in situ Mg<sub>2</sub> Si/Al—Si—Cu composite. J. Alloys Compd. 2005. Vol. 389. P. L1—L4.

11. Deev V. B., Prusov E. S., Kutsenko A. I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metall. Ital. 2018. No. 2. P. 16—24.

12. Konovalov S. V., Danilov V. I., Zuev L. B., Filip’ev R. A., Gromov V. E. On the influence of the electrical potential on the creep rate of aluminum. Phys. Solid State. 2007. Vol. 49 (8). P. 1457—1459. DOI: 10.1134/S1063783407080094.

13. Aryshenskii E., Hirsch J., Yashin V., Konovalov S., Kawalla R. Influence of local inhomogeneity of thermomechanical treatment conditions on microstructure evolution in aluminum alloys. J. Mater. Eng. Perform. 2018. Vol. 27 (12). P. 6780—6799. DOI: 10.1007/s11665-018-3733-8.

14. Nordin N. A., Abubakar T., Hamzeh E., Farahany S., Ourdjini A. Effect of superheating melt treatment on Mg<sub>2</sub>Si particulate reinforcement in Al—Mg<sub>2</sub>Si—Cu in situ composite. Procedia Eng. 2017. Vol. 184. P. 595—603.

15. Zhang J. T., Zhao Y. G., Xu X. F., Liu X. B. Effect of ultrasonic on morphology of primary Mg<sub>2</sub>Si in insitu Mg<sub>2</sub>Si/Al composite. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. P. 2852—2856.

16. Деев В. Б. Модифицирование литейных алюминиевых сплавов системы Al—Mg—Si обработкой жидкой фазы наносекундными электромагнитными импульсами / В. Б. Деев [и др.] // Известия вузов. Цветная металлургия. – 2021. – Т. 27. – No. 4. – С. 32—41 / Deev V. B., Ri E. H., Prusov E. S., Ermakov M. A., Goncharov A. V. Grain refinement of casting aluminum alloys of the Al—Mg—Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russ. J. Non-Ferr. Met. 2021. Vol. 62. No. 5. P. 522—530.

17. Li J., An Q., Wu S., Li F., Lü S., Guo W. Relationship of Mg<sub>2</sub> Si morphology with Mg<sub>2</sub>Si content and its effect on properties of in-situ Mg<sub>2</sub>Si/Al—Cu composites. J. Alloy Compd. 2019. Vol. 808. Paper 151771.

18. Li C., Wu Y. Y., Li H., Liu X. F. Morphological evolution and growth mechanism of primary Mg<sub>2</sub>Si phase in Al—Mg<sub>2</sub>Si alloys. Acta Mater. 2011. Vol. 59. P. 1058—1067. DOI: 10.1016/j.actamat.2010.10.036.

19. Li C., Wang C., Ju H., Xue X., Zha M., Wang H. Prediction of modified morphology for primary Mg<sub>2</sub> Si induced by trace-element adsorption: A first-principles study. Materialia. 2020. Vol. 14. Paper 100875. DOI: 10.1016/j.mtla.2020.100875.

20. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al—Mg<sub>2</sub>Si composites. AIP Conf. Proc. 2019. Vol. 2162. Paper 020145. DOI: 10.1063/1.5130355.

21. Deev V., Ri E., Prusov E. Effect of aluminum melt treatment by nanosecond electromagnetic pulses on structure and properties of castings. In: Proc. 73-rd World foundry congress «Creative Foundry» (WFC 2018) (Polish Foundrymen’s Association). 2018. P. 155—156.

22. Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11. No. 6. Paper 954.

23. Ri E. K., Hosen R., Ermakov M. A., Knyazev G. A., Dzhou B. L.,Ri V. E. Solidification of low-silicon iron under the action of nanosecond electromagnetic pulses. Steel Trans. 2013. Vol. 43. No. 8. P. 471—473.

24. Krymsky V. V., Shaburova N. A., Litvinova E. V. Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state. Mater. Sci. Forum. 2016. Vol. 843. P. 106—110.

25. Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: Opportunities and prospects of application. Mater. Sci. Forum. 2019. Vol. 946. P. 655—660. DOI: 10.4028/www.scientific.net/MSF.946.655.


Review

For citations:


Deev V.B., Ri E.Kh., Prusov E.S., Ermakov M.A., Kim E.D. Influence of parameters used for melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites. Izvestiya. Non-Ferrous Metallurgy. 2022;(3):30-37. (In Russ.) https://doi.org/10.17073/0021-3438-2022-3-30-37

Views: 328


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)