Extraction of zirconium from its oxide during the electrolysis of KF–AlF3 –Al2O3 –ZrO2 melts
https://doi.org/10.17073/0021-3438-2022-3-13-20
Abstract
Zirconium is one of the most commonly used materials, while the existing methods of its production are multi-stage and energy-intensive. The paper proposes a method for extracting zirconium from its oxide by KF–AlF3 –Al2O3 –ZrO2 low-temperature oxide-flu-oride melt electrolysis with a temperature of 750 °C. For this purpose, voltammetric methods were used to determine potentials of the electrochemical reduction of zirconium and aluminum ions on a glassy carbon electrode. It was shown that the electrochemical reduction of aluminum ions in the KF–AlF3 –Al2O3 melt occurs at a more negative potential than –0.05 V relative to the aluminum electrode with the cathode peak formation in the potential range from –0.18 to –0.2 V. With the addition of 1 wt.% of ZrO2 , cathode current growth on the voltammogram begins at a more negative potential than 0 V, and the cathode peak is formed at a potential of about –0.1 V. Similar results were observed in the study of the cathode process in the KF–AlF3 –Al2O3 melt with and without ZrO2 added by means of square wave voltammetry. It was suggested that zirconium-containing electroactive ions are discharged at a potential that is 0.05–0.08 V more positive than the discharge potential of aluminum-containing ions due to the lower bond energy. At a graphite cathode potential of –0.1 and –0.3 V relative to the aluminum electrode, the KF–AlF3 –Al2O3 –ZrO2 melt electrolysis was carried out, and the elemental and phase composition of deposits obtained was determined by X-ray phase analysis, scanning electron microscopy and energy dispersive microanalysis. It was shown that the 98.5 –99.5 wt. % zirconium deposit was obtained at a potential of –0.1 V. This indicates a reliable possibility of selective zirconium extraction using the proposed method.
About the Authors
A. A. FilatovRussian Federation
junior. research associate
Ural Branch of the Russian Academy of Sciences
Institute of High Temperature Electrochemistry (IHTE)
laboratory of electrode processes
Ekaterinburg
A. Yu. Nikolaev
Russian Federation
Candidate of Chemical Sciences, Junior research associate.
Ural Branch of the Russian Academy of Sciences
Institute of High Temperature Electrochemistry (IHTE)
laboratory of electrode processes
Ekaterinburg
A. V. Suzdaltsev
Russian Federation
Candidate of Chemical Sciences, Leading researcher, Head of the Scientific laboratory
Ural Branch of the Russian Academy of Sciences
Institute of High Temperature Electrochemistry (IHTE)
laboratory of electrode processes
sci. laboratory of electrochemical devices and materials
Ekaterinburg
Yu. P. Zaikov
Russian Federation
Doctor of Chemical Sciences, Professor, scientific hand, Head of the Department
Ural Branch of the Russian Academy of Sciences
Institute of High Temperature Electrochemistry (IHTE)
Department of Electrochemical Production Technology
Ekaterinburg
References
1. Ядерное горючее и реакторные металлы. Под ред. акад. А. А. Бочвара [и др.] – М.: Атомиздат, 1959. / Nuclear fuel and reactor metals. Ed. A. A. Bochvar. Moscow: Atomizdat, 1959 (In Russ.).
2. Mansurov Yu. N., Rakhmonov J. U., Aksyonov A. A. Modified aluminum alloys of Al—Zr system for power transmission lines of Uzbekistan. Non-Ferr. Met. 2020. No. 2. P. 51—55. DOI: 10.17580/nfm.2020.02.06.
3. Белов Н. А. Влияние отжига на электросопротивление и твердость горячекатанных листов алюминиевых сплавов, содержащих до 0,5 % Zr / Н. А. Белов [и др.] // Известия вузов. Цветная металлургия. – 2016. – No. 3. – С. 48—55. / Belov N. A., Dostaeva A. M., Shurkin P. K., Korotkova N. O., Yakovlev A. A. Impact of annealing on electrical resistivity and hardness of hot-rolled alloyed aluminum sheets with Zr content up to 0,5 wt.%. Rus. J. Non-Ferr. Met. 2016. Vol. 57. P. 429—435. DOI: 10.17073/0021-3438-2016-3-48-55.
4. Колобов Г. А. Технологии вторичных тугоплавких редких металлов (обзор) / Г. А. Колобов, В. С. Панов, Н. Н. Ракова // Известия вузов. Цветная металлургия. – 2014. – No. 1. – С. 41—48 / Kolobov G. A., Panov V. S., Rakova N. N. Processes of secondary refractory rare metals (review). Rus. J. Non-Ferr. Met. 2014. Vol. 55. P. 141—147. DOI: 10.17073/0021-3438-2014-1-41-48.
5. Огородов Д. В. Способы получения лигатуры Al—Zr (обзор) / Д. В. Огородов, Д. А. Попов, А. В. Трапезников // Тр. ВИАМ. – 2015. – No. 11. – C. 2—11 / Ogorodov D. V., Popov D. A., Trapeznikov A. V. Methods of obtaining Al—Zr ligature (review). Trudy VIAM. 2015. No. 11. P. 2—11 (In Russ.). DOI: 10.18577/2307-6046-2015-0-11-2-2.
6. Polyakova L. P., Stangrit P. T. Cathodic processes at electrolysis of chloride and chloride-fluoride melts of zirconium. Electrochim. Acta. 1982. Vol. 27. P. 1641—1645. DOI: 10.1016/0013-4686(82)80092-3.
7. Girginov A., Tzvetkoff T. Z., Bojinov M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. J. Appl. Electrochem. 1995. Vol. 25. P. 993—1003. DOI: 10.1007/BF00241947.
8. Mellors G. W., Senderoff S. The electrodeposition of coherent deposits of refractory metals. III. Zirconium. J. Electrochem. Soc. 1966. Vol. 113 (1). P. 60—66. DOI: https://doi.org/10.1149/1.2423865.
9. Xu L., Xiao Y., Xu Q., Song Q., Yang Y. Electrochemistry of zirconium in molten chlorides. Int. J. Electrochem. Sci. 2017. Vol. 12 (7). P. 6393—6403. DOI: 10.20964/2017.07.51.
10. Xiang M., Zhang Y., Jiang F., Hong M., Liu Z., Leng J. Progress in electrodesposition of zirconium coating from molten salts. Chin. J. Rare Met. 2016. Vol. 40 (6). P. 620—625. DOI: 10.13373/j.cnki.cjrm.2016.06.016.
11. Xu L., Xiao Y., Van Sandwijk A., Xu Q., Yang Y. Production of nuclear grade zirconium: A review. J. Nuclear Mater. 2015. Vol. 466. P. 21—28. DOI: 10.1016/j.jnucmat.2015.07.010.
12. Mohandas K. S., Fray D. J. Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride. Met. Mat. Trans. B. 2009. Vol. 40. P. 685—699. DOI: 10.1007/s11663-009-9263-x.
13. Peng J., Li G., Chen H., Wang D., Jin X., Chen G. Z. Cyclic voltammetry of ZrO 2 powder in the metallic cavity electrode in molten CaCl<sub>2</sub> . J. Electrochem. Soc. 2010. Vol. 157 (1). P. F1—F9. DOI: 10.1149/1.3244568.
14. Шуров Н. И. О механизме восстановления оксидов в расплавах хлорида кальция / Н. И. Шуров [и др.] // Известия вузов. Цветная металлургия. – 2015. – No. 2. – С. 14—19 / Shurov N. I., Khramov A. P., Zaikov Yu. P., Kovrov V. A., Suzdaltsev A. V. Reduction mechanism of oxides in calcium chloride melts. Rus. J. Non-Ferr. Met. 2015. Vol. 56. P. 267—271. DOI: 10.3103/S1067821215030207.
15. Heck S. C., De Oliveira M. F., Radovanovic E. Ti production from natural rutile sand by the FFC process: Experimental and mathematical modelling study. J. Electroanal. Chem. 2022. Vol. 905. P. 115996. DOI: 10.1016/j.jelechem.2021.115996.
16. Li Sh., Che Yu., Song J., Shu Y., He J., Xu B., Yang B. Preparation of zirconium metal through electrolysis of zirconium oxycarbonitride anode. Sep. Purif. Tech. 2021. Vol. 274. P. 118803. DOI: 10.1016/j.seppur.2021.118803.
17. Li Sh., Che Yu., Shu Y., He J., Song J., Yang B. Review — Preparation of zirconium metal by electrolysis. J. Electrochem. Soc. 2021. Vol. 168. P. 062508. DOI: 10.1149/1945-7111/ac0996.
18. Bao M., Wang Z.-W., Gao B.-L., Shi Z.-N., Hu X.-W., Yu J.-Y. Electrical conductivity of NaF—AlF<sub>3</sub> —CaF<sub>2</sub> — Al<sub>2</sub>O<sub>3</sub> —ZrO<sub>2</sub> molten salts. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. P. 3788—3792. DOI: 10.1016/S1003-6326(13)62930-1
19. Нерубащенко В. В. Получение лигатуры алюминий—цирконий в электролизных ваннах / В. В. Нерубащенко [и др.] // Цветные металлы. – 1978. – No. 3. – С. 36—38 / Nerubashchenko V. V., Voleinik V. V., Krymov A. P., Galochka V. P., Napalkov V. I. Obtaining of aluminium—zirconium ligature in electrolysis baths. Tsvetnye metally. 1978. No. 3. P. 36—38 (In Russ.).
20. Li M., Li Y., Wang Zh. Electrochemical reduction of zirconium oxide and co-deposition of Al—Zr alloy from cryolite molten salt. J. Electrochem. Soc. 2019. Vol. 166 (2). P. D65—D68. DOI: 10.1149/2.1291902jes.
21. Gorlanov E. S., Bazhin V. Yu., Fedorov S. N. Carbide formation at a carbon-graphite lining cathode surface wettable with aluminum. Refract. Ind. Ceram. 2016. Vol. 57 (3). P. 292—296. DOI: 10.1007/s11148-016-9971-0.
22. Wang Z., Li H., Zhang C., Xue J., Liu X. The role of TiB<sub>2</sub> particles in the creep and penetrating resistance of graphite-based composite. Ceram. Int. 2021. Vol. 47. P. 12096—121031. DOI: 10.1016/j.ceramint.2021.01.054.
23. Kontrik M., Simko F., Galuskova D., Nosko M., Bizovska V., Hicak M., Galusek D. Rakhmatullin A., Korenko M. A corrosion mechanism of titanium diboride in KF—AlF<sub>3</sub> — Al<sub>2</sub>O<sub>3</sub> melt. J. Eur. Ceram. Soc. 2017. Vol. 38. P. 1143—1151. DOI: 10.1016/j.jeurceramsoc.2017.11.030.
24. Sizyakov V. M., Bazhin V. Yu., Vlasov A. A. Status and prospects for growth of the aluminum industry. Metallurgist. 2010. Vol. 54 (7—8). P. 409—414. DOI: 10.1007/s11015-010-9316-z.
25. Суздальцев А. В. Извлечение скандия и циркония из их оксидов при электролизе оксидно-фторидных расплавов / А. В. Суздальцев [и др.] // Расплавы. – 2018. – No. 1. – C. 5—13 / Suzdaltsev A. V., Filatov A. A., Nikolaev A. Yu., Pankratov A. A., Molchanova N. G., Zaikov Yu. P. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide—fluoride melts. Rus. Metall. (Metally). 2018. Vol. 2018 (2). P. 133-138. DOI: 10.1134/S0036029518020180.
26. Суздальцев А. В. Алюминиевый электрод для электрохимических исследований в криолит-глиноземных расплавах при 700—960 °С / А. В. Суздальцев, А. П. Храмов, Ю. П. Зайков // Электрохимия. – 2012. – Т. 48. – No. 12. – С. 1264—1271 / Suzdaltsev A. V., Khramov A. P., Zaikov Yu. P. Aluminum electrode for electrochemical studies in cryolite—alumina melts at 700—960°C. Rus. J. Electrochem. 2012. Vol. 48. P. 1153—1159. DOI: 10.1134/S1023193512120129.
27. Vorobiev A., Suzdaltsev A. V., Pershin P., Galashev A., Zaikov Yu. Structure of MF—AlF<sub>3</sub> —ZrO<sub>2</sub> (M = K, Na, Li) ionic melts. J. Mol. Liq. 2020. Vol. 299С. P. 112241. DOI: 10.1016/j.molliq.2019.112241.
28. Roine A. HSC Chemistry ® [Software], Outotec, Pori, 2018. Software available at www.outotec.com/HSC.
29. Vorobiev A., Suzdaltsev A. V., Pershin P., Galashev A., Zaikov Yu. Structure of MF—AlF<sub>3</sub> —ZrO<sub>2</sub> (M = K, Na, Li) ionic melts. J. Mol. Liq. 2020. Vol. 299С. P. 112241. DOI: 10.1016/j.molliq.2019.112241.
30. Robert E., Olsen J. E., Danek V., Tixhon E., Ostvold T., Gilbert B. Structure and thermodynamics of alkali fluoride — aluminum fluoride — alumina melts. Vapor pressure, solubility and Raman spectroscopic studies. J. Phys. Chem. B. 1997. Vol. 101. P. 9447—9457. DOI: 10.1021/jp9634520.
31. Лякишев Н. П. Диаграммы состояния двойных металлических систем: Справочник / Н. П. Лякишев. – М.: Машиностроение. – 1996 / Lyakishev N. P. State diagrams of binary metallic systems: A handbook. Moscow: Mashinostroenie, 1996 (In Russ.).
32. Salyulev A. B., Moskalenko N. I., Shishkin V. Yu., Zaikov Yu. P. Selective evaporation of the components of molten (LiCl—KCl) eut — BaCl<sub>2</sub> —SrCl<sub>2</sub> —NdCl<sub>3</sub>mixtures at low pressures. Rus. Metall. (Metally). 2021. Vol. 2021. P. 151—158. DOI: 10.1134/S0036029521020233.
33. Каплан Г. Е. Электролиз в металлургии редких металлов / Г. Е. Каплан, Г. Ф. Силина, Ю. И. Остроушко. – М.: Металлургиздат, 1963 / Kaplan G. E., Silina G. F., Ostroushko Yu. I. Electrolysis in metallurgy of rare metals. Moscow: Metallurgizdat, 1963.
Review
For citations:
Filatov A.A., Nikolaev A.Yu., Suzdaltsev A.V., Zaikov Yu.P. Extraction of zirconium from its oxide during the electrolysis of KF–AlF3 –Al2O3 –ZrO2 melts. Izvestiya. Non-Ferrous Metallurgy. 2022;(3):13-20. (In Russ.) https://doi.org/10.17073/0021-3438-2022-3-13-20