Hydrometallurgical processing of spent zinc-manganese batteries
https://doi.org/10.17073/0021-3438-2022-3-4-12
Abstract
This paper explores the possibility of zinc-manganese battery recycling in alkaline solutions. It was shown that three-stage washing could remove potassium chlorides from active mass of milled batteries. Influence pattern regularities were established for some parameters (temperature, alkali concentration and number of cycles) of alkaline leaching of a zinc-carbon and alkaline battery mixture in respect of zinc extraction into the solution. The reason of low zinc extraction from this material was found to be the presence of zinc and manganese compounds as heterolite and hydroheterolite that are difficult to dissolve in alkalis. It was found that zinc extraction increases by 2.6 times with an increase in the NaOH concentration from 100 to 205 g/dm3 , but further increase in the NaOH concentration, as well as an increase in temperature in the range of 30–85 °C, does not affect zinc extraction into the solution. Optimal process parameters of zinc-carbon and alkaline battery leaching at 30 min leaching time and 200 g/dm3 pulp density were determined as follows: temperature is 30 °C, NaOH concentration is 390 g/dm3 . Experiments on zinc ion accumulation with repeated filtrate leaching showed that increasing the initial NaOH concentration to 390 g/dm3 makes it possible to transfer the maximum possible amount of zinc into the solution at the same NaOH consumption due to the cyclic treatment of solutions. Zinc and NaOH concentrations in solutions after leaching reached 59 g/dm3 and 300 g/dm3 , respectively. Solutions obtained could be sent to zinc electrowinning and then returned to leaching again.
Keywords
About the Authors
E. B. KolmachikhinaRussian Federation
Candidate of Technical Sciences, Associate Professor
Department of Metallurgy of Non-ferrous Metals (MCM)
620002
19 Mira Street
Ekaterinburg
Ekaterinburg
K. D. Naumov
Russian Federation
Candidate of Technical Sciences, Engineer
Department of Metallurgy of non-ferrous Metals
Ekaterinburg
D. I. Bludova
Russian Federation
assistant
Department of Metallurgy of non-ferrous Metals
Ekaterinburg
S. A. Sap’yanov
Russian Federation
graduate student
department of foundry production
Ekaterinburg
V. G. Lobanov
Russian Federation
Candidate of Technical Sciences, Associate Professor
Department of Metallurgy of non-ferrous Metals
Ekaterinburg
Z. M. Golibzoda
Russian Federation
student
Department of Metallurgy of non-ferrous Metals
Ekaterinburg
References
1. Чем опасны батарейки. URL: http://cgon.rospotrebnadzor.ru/content/62/1040/ (дата обращения: 15. 10. 2021). / What are the dangers of batteries? URL: http://cgon.rospotrebnadzor.ru/content/62/1040 (accessed: 15. 10. 2021) (In Russ.).
2. Sadeghi Maryam S., Jesus J., Soares Helena M. V. M. A critical updated review of the hydrometallurgical routes for recycling zinc and manganese from spent zinc-based batteries. Waste Manag. 2020. Vol. 113. P. 342—350. DOI: 10.1016/j.wasman.2020.05.049.
3. Работа правительства. URL: http://government.ru/rugovclassifier/848/main/ (дата обращения: 15. 10. 2021). / Government work. URL: http://government.ru/rugovclassifier/848/main/ (accessed: 15. 10. 2021) (In Russ.).
4. De Souza Martha C. C., Correa de Oliveira D., Tenorio J. A. Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching. J. Power Sources. 2001. Vol. 103. No. 1. P. 120—126. DOI: 10.1016/S0378-7753(01)00850-3.
5. De Souza Martha C. C., Tenorio J. A. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. J. Power Sources. 2004. Vol. 136. No. 1. P. 191—196. DOI: 10.1016/j.jpowsour.2004.05.019.
6. Ranjit K. B., Aneek K. K., Sree L. K. Recovery of manganese and zinc from spent Zn—C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Waste Manag. 2016. Vol. 51. No. 5. P. 174—181. DOI: 10.1016/j.wasman.2015.11.002.
7. Grudinsky P. I., Zinoveev D. V., Dyubanov V. G., Kozlov P. A. State of the art and prospect for recycling of waelz slag from electric arc furnace dust processing. Inorg. Mater.: Appl. Res. 2019. Vol. 10. No. 5. P. 1220—1226. DOI: 10.1134/S2075113319050071.
8. Belardi G., Medici F., Piga L. Influence of gaseous atmosphere during a thermal process for recovery of manganese and zinc from spent batteries. J. Power Sources. 2014. Vol. 248. P. 1290—1298. DOI: 10.1016/j.jpowsour.2013.10.064.
9. Burri R., Weber A. The wimmis project. Proceedings of battery recycling. J. Power Sources. 1995. Vol. 57. No. 1/2. P. 31—35. DOI: 10.1016/0378-7753(95)02235-X.
10. Sobianowska-Turek A., Szczepaniak W., Maciejewski P., Gawlik-Kobylińska M. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn—MnO<sub>2</sub> and Zn—C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid. J. Power Sources. 2016. Vol. 325. P. 220—228. DOI: 10.1016/j.jpowsour.2016.06.042.
11. Rácz R., Ilea P. Electrolytic recovery of Mn<sub>3</sub> O<sub>4</sub> and Zn from sulphuric acid leach liquors of spent zinc—carbon—MnO<sub>2</sub> battery powder. Hydrometallurgy. 2013. Vol. 139. P. 116—123. DOI: 10.1016/j.hydromet.2013.08.006.
12. Sadeghi Maryam S., Vanpeteghem Guillaumme, Neto Isabel F. F., Soares Helena M. V. M. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches. Waste Manag. 2017. Vol. 60. P. 696—705. DOI: 10.1016/j.wasman.2016.12.002.
13. Senanayake G., Avraamides J., Clegg R. Sulfur dioxide leaching of spent zinc—carbon-battery scrap. J. Power Sources. 2006. Vol. 159. No. 2. P. 1488—1493. DOI: 10.1016/j.jpowsour.2005.11.081.
14. Cruz-Díaz M. R., Arauz-Torres Y., Caballero F., Lapidus G. T., González I. Recovery of MnO<sub>2</sub> from a spent alkaline battery leach solution via ozone treatment. J. Power Sources. 2015. Vol. 274. P. 839—845. DOI: 10.1016/j.jpowsour.2014.10.121.
15. Petranikova M., Ebin B., Mikhailova S., Steenari B.-M., Ekberg C. Investigation of the effects of thermal treatment on the leachability of Zn and Mn from discarded alkaline and Zn—C batteries. J. Cleaner Product. Vol. 170. P. 1195—1205. DOI: 10.1016/j.jclepro.2017.09.238.
16. Andak B., Özduğan E., Türdü S., Bulutcu A. N. Recovery of zinc and manganese from spent zinc-carbon and alkaline battery mixtures via selective leaching and crystallization processes. J. Environ. Chem. Eng. 2019. Vol. 7. No. 5. DOI: 10.1016/j.jece.2019.103372.
17. Demirkıran N., Şenel M. Dissolution kinetics of metallic zinc obtained from spent zinc-carbon batteries in nitric acid solutions. Environ. Prog. Sustain. Energy. 2021. Vol. 40. No. 3. P. 10. DOI: 10.1002/ep.13553.
18. Shin S. M., Senanayake G., Sohn J. S., Kang J. G., Yang D. H., Kim T. H. Separation of zinc from spent zinc-carbon batteries by selective leaching with sodium hydroxide. Hydrometallurgy. Vol. 96. No. 4. P. 349—353. DOI: 10.1016/j.hydromet.2008.12.010.
19. Senanayake G., Shin S.-M., Senaputra A., Winn A., Pugaev D., Avraamides J., Sohn J.-S., Kim D.-J. Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxide in ammoniacal and sulfuric acid solutions. Hydrometallurgy. 2010. Vol. 105. No. 1. P. 36—41. DOI: 10.1016/j.hydromet.2010.07.004.
20. Nogueira C. A., Margarido F. Selective process of zinc extraction from spent Zn—MnO 2 batteries by ammonium chloride leaching. Hydrometallurgy. 2015. Vol. 157. P. 13—21. DOI: 10.1016/j.hydromet.2015.07.004.
21. Buzatu T., Popescu G., Birloaga I., Simona S. A. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Waste Manag. 2013. Vol. 33. No. 3. P. 699—705. DOI: 10.1016/j.wasman.2012.10.005.
22. Baba A. A., Adekola A. F., Bale R. B. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc—carbon batteries. J. Hazard. Mater. 2009. Vol. 171. No. 1. P. 838—844. DOI: 10.1016/j.jhazmat.2009.06.068.
23. Demirkiran N., Ozdemir G. D. T. A kinetic model for dissolution of zinc oxide powder obtained from waste alkaline batteries in sodium hydroxide solutions. Metall. Mater. Trans. B. 2019. Vol. 50. No. 1. P. 491—501. DOI: 10.1007/s11663-018-1469-3.
24. Shin S. M., Kang J. G., Yang D. H., Sohn J. S. Development of metal recovery process from alkaline manganese batteries in sulfuric acid solutions. Mater. Trans. Japan Inst. Met. 2007. Vol. 48. No. 2. P. 244—248. DOI: 10.2320/matertrans.48.244.
25. Gęga J., Walkowiak W. Leaching of zinc and manganese from used up zinc-carbon batteries using aqueous sulfuric acid solutions. Physicochem. Probl. Miner. Process. 2011. Vol. 46. P. 155—162.
26. Shin S. M., Kang J. G., Yang D. H., Sohn J. S., Kim T. H. Selective leaching of zinc from spent zinc-carbon battery with ammoniacal ammonium carbonate. Mater. Trans. Jap. Inst. Met. 2008. Vol. 49. No. 9. P. 2124—2128. DOI: 10.2320/matertrans.MRA2008164.
27. Shalchian H., Rafsanjani-Abbasi A., Vahdati-Khaki J., Babakhani A. Selective acidic leaching of spent zinc-carbon batteries followed by zinc electrowinning. Metall. Mater. Trans. B. 2015. Vol. 46. No. 1. P. 38—47. DOI: 10.1007/s11663-014-0216-7.
28. Chen A., Xu D., Chen X., Zhang W., Liu X. Measurements of zinc oxide solubility in sodium hydroxide solution from 25 to 100 °C. Trans. Nonferr. Met. Soc. China. 2012. Vol. 22. No. 6. P. 1513—1516. DOI: 10.1016/S1003-6326(11)61349-6.
29. Gallaway J. W., Menard M., Hertzberg B., Zhong Z., Croft M., Sviridov L. A., Turney D. E., Banerjee S., Steingart D. A., Erdonmez C. K. Hetaerolite profiles in alkaline batteries measured by high energy EDXRD. J. Electrochem. Soc. Vol. 162. No. 1. P. 162—168. DOI: 10.1149/2.0811501JES.
30. Farzana R., Rajarao R., Hassan K., Behera P. R., Sahajwalla V. Thermal nanosizing: Novel route to synthesize manganese oxide and zinc oxide nanoparticles simultaneously from spent Zn—C battery. J. Cleaner Product. 2018. Vol. 196. P. 478—488. DOI: 10.1016/j.jclepro.2018.06.055.
31. Мамяченков С. В. Исследование влияния технологических параметров на эффективность электролиза цинка из щелочных растворов / С. В. Мамяченков // Известия вузов. Цветная металлургия. – 2018. – No 6. – C. 12—19. DOI: 10.17073/0021-3438-2018-6-12-19. / Mamyachenkov S. V., Yakornov S. A., Anisimova O. S., Kozlov P. A., Ivakin D. A. Research into the influence of process parameters on the efficiency of zinc electrolysis from alkaline solutions. Russ. J. Non-Ferr. Met. 2019. Vol. 60. No. 1. P. 1—7. DOI: 10.3103/S1067821219010097.
32. Youcai Z., Chenglong Z. Electrowinning of zinc and lead from alkaline solutions. In: Pollution control and resource reuse for alkaline hydrometallurgy of amphoteric metal hazardous wastes: Handbook of environmental engineering. Cham: Springer, 2017. P. 171—262.
Review
For citations:
Kolmachikhina E.B., Naumov K.D., Bludova D.I., Sap’yanov S.A., Lobanov V.G., Golibzoda Z.M. Hydrometallurgical processing of spent zinc-manganese batteries. Izvestiya. Non-Ferrous Metallurgy. 2022;(3):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2022-3-4-12