Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

New high-strength casting aluminum alloy based on the Al–Zn–Mg–Ca–Fe system without requirement for heat treatment

https://doi.org/10.17073/0021-3438-2020-1-48-58

Abstract

The paper substantiates the composition and prospects of using high strength Al–Zn–Mg–Ca–Fe casting aluminum alloy without heat treatment based on the study on the structure, technological and mechanical properties. Alloys of the base composition Al–5.5%Zn–1.5%Mg (wt.%) jointly and separately doped with 0.5–1.0 % Ca and 0.5 % Fe were obtained as the objects of research. Standard casting alloys according to GOST 1583-93: AK12M2, AMg6lch, AM4,5Kd were the objects of comparison. A hot tensile test using a cast test bar was conducted to check the tendency to form hot cracks due to hindered contraction. It was shown that separate alloying with calcium and iron does not contribute to the improvement of crack resistance and adversely affects mechanical properties. Combined alloying with 1 % Ca and 0.5 % Fe improves the hot tearing resistance to the level of the AMg6lch alloy properties. This effect is due to calcium-containing phases of eutectic origin formed and a favorable grain structure created that is free from columnar grains. Iron in the alloy structure is bound in compact Al10CaFe2 phase particles as a result of the non-equilibrium crystallization during permanent mold casting. The formation of this phase allowed to reduce the amount of zinc in the (Al, Zn)4Ca phase and mostly retain the (Al) solid solution composition as evidenced by similar hardness values of the Al–5.5%Zn–1.5%Mg base alloy and Al–5.5%Zn–1.5%Mg–1%Ca–0.5%Fe alloy, and the superiority of the values over the hardness of alloys separately alloyed with calcium and iron. Also the cast hardness of the promising alloy more than 20 HV higher than the cast hardness of commercial cast alloys. The new alloy in the as-cast condition exhibited competitive mechanical tensile properties: UTS ~ 310 MPa, YS ~ 210 MPa, El ~ 4 %.

About the Authors

P. K. Shurkin
National University of Science and Technology «MISIS»
Russian Federation

Postgraduate student, engineer of the Department of metal forming

119049, Russia, Moscow, Leninskii pr., 4



N. A. Belov
National University of Science and Technology «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof., chief researcher of the Department of metal forming 

Moscow



A. F. Musin
National University of Science and Technology «MISIS»
Russian Federation

Graduate student, engineer of the Department of metal forming 

Moscow



A. A. Aksenov
National University of Science and Technology «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of metal forming 

Moscow



References

1. Glazoff M., Khvan A., Zolotorevsky V., Belov N., Dinsdale A. Casting aluminum alloys. 2-nd ed.: Their physical and mechanical metallurgy. Elsevier, 2018.

2. Hatch J.E. Aluminum: Properties and physical metallurgy. Ohio: American Society for Metals, 1984.

3. Dong X., Yang H., Zhu X., Ji S. High strength and ductility aluminium alloy processed by high pressure die casting. JALCOM. 2019. Vol. 773. P. 86—96. DOI: 10.1016/j.jallcom.2018.09.260.

4. Ji S., Watson D., Fan Z., White M. Development of a super ductile diecast Al—Mg—Si alloy. Mater. Sci. Eng. A. 2012. Vol. 556. P. 824—833. DOI: 10.1016/j.msea.2012.07.074.

5. Zhang P., Li Z., Liu B., Ding W., Peng L. Improved tensile properties of a new aluminum alloy for high pressure die casting. Mater. Sci. Eng. A. 2016. Vol. 651. P. 376—390. DOI: 10.1016/j.msea.2015.10.127.

6. Zuqi H., Li W., Shulin L., Peng Z., Shusen W. Research on the microstructure, fatigue and corrosion behavior of permanent mold and die cast aluminum alloy. Mater. Design. 2014. Vol. 55. P. 353—360. DOI: 10.1016/j.matdes.2013.10.012.

7. Závodská D., Tillová E., Švecová I., Kuchariková L., Chalupová M. Secondary cast Al-alloys with higher content of iron. Mater. Today. Proc. 2018. Vol. 5. P. 26680—26686. DOI: 10.1016/j.matpr.2018.08.135.

8. Yang H., Ji S., Fan Z. Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al—Si—Cu alloys. Mater. Design. 2015. Vol. 85. P. 823—832. DOI: 10.1016/j.matdes.2015.07.074.

9. Bogdanova T.A., Merkulova G.A., Gil’manshina T.R. Effect of iron and manganese content on the structure of cast article from aluminum alloy AK12. Met. Sci. Heat Treat. 2019. Vol. 60. Iss. 9—10. P. 555—559. DOI: 10.1007/s11041-019-00318-0.

10. Cong X., Chaoli M., Yufeng S., Shuji H., Guangxi L., Shaokang G. Optimizing strength and ductility of Al—7Si—0.4 Mg foundry alloy: Role of Cu and Sc addition. JALCOM. 2019. Vol. 810. P. 151944. DOI: 10.1016/j.jallcom.2019.151944.

11. Prach O., Trudonoshyn O., Randelzhofer P., Körner С., Durst K. Effect of Zr, Cr and Sc on the Al—Mg—Si—Mn high-pressure die casting alloys. Mater. Sci. Eng. A. 2019. Vol. 759. P. 603—612. DOI: 10.1016/j.msea.2019.05.038.

12. Bingbing W., Weiping C., Lusheng L., Xueyang C., Li Z., Zhiqiang F. Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al— 7Si—0.3Mg—1.0Fe casting alloys. Mater. Sci. Eng. A. Vol. 666. P. 165—175. DOI: 10.1016/j.msea.2016.04.036.

13. Fei—fan W., Wen M., Hong—wei Z., Zhi—qiang H. Effects of under—aging treatment on microstructure and mechanical properties of squeeze-cast Al—Zn—Mg—Cu alloy. Trans. Nonferr. Met. Soc. China. 2018. Vol. 28. No. 10. P. 1920—1927. DOI: 10.1016/S1003-6326(18)64837-X.

14. Fan C.H., Chen Z.H., He W.Q., Chen J.H., Chen D. Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al—Zn—Mg—Cu alloy. JALCOM. 2010. Vol. 504. Iss. 2. P. L42—L45. DOI: 10.1016/j.jallcom.2010.06.012.

15. Dong J., Cui J.Z., Yu F.X., Zhao Z.H., Zhuo Y.B. A new way to cast high-alloyed Al—Zn—Mg—Cu—Zr for super-high strength and toughness. J. Mater. Proc. Technol. 2006. Vol. 171. Iss. 3. P. 399—404. DOI: 10.1016/j.jmatprotec.2005.07.010.

16. Cheng-kun Z., Wei-wen Z., Da-tong Z., Yuan-yuan L. Low cycle fatigue behavior of T4-treated Al—Zn—Mg—Cu alloys prepared by squeeze casting and gravity die casting. Trans. Nonferr. Met. Soc. China. 2015. Vol. 25. Iss. 11. P. 3505—3514. DOI: 10.1016/S1003-6326(15)63992-9.

17. Xinwei L., Qizhou C., Bingyi Z., Yating X., Bing L. Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al—Zn—Mg—Cu alloy. JALCOM. 2016. Vol. 675. 5 P. 201—210. DOI: 10.1016/j.jallcom.2016.03.091

18. Levchuk V.V., Trapeznikov A.V., Pentyukhin S.I. Corrosionresistant cast aluminum alloys (overview). Trudy VIAM. 2018. No. 7 (67). P. 33—40 (In Russ.). DOI: 10.18577/2307-6046-2018-0-7-33-40.

19. Xinyan Y., Jen C.L., Cagatay Y., Larry Z., Xavier D., Robert T., Eric L. An Al—Zn—Mg—Ag high-strength alloy for aerospace and automotive castings. EP1885897A2 (EU). 2006.

20. Jesik S., Taehyeong K., Dong E.K., Dongkwon K., Kitae K. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications. JALCOM. 2017. Vol. 698. P. 577—590. DOI: 10.1016/j.jallcom.2016.12.269.

21. Benedetti A.V., Cabot P.L., Garrido J.A., Moreira A.H. Influence of iron addition on the microstructure and the electrochemical corrosion of Al—Zn—Mg alloys. J. Appl. Electrochem. 2001. Vol. 31. Iss. 3. P. 293—300. DOI: 10.1023/A:1017566002951.

22. Zaki Ahmad. Aluminium alloys — new trends in fabrication and applications. Croatia: InTech, 2012. DOI: 10.5772/3354.

23. Zolotorevskii V.S., Pozdnyakov A.V., Churyumov A.Yu. Search for promising compositions for developing new multiphase casting alloys based on Al—Zn—Mg matrix using thermodynamic calculations and mathematic simulation. Phys. Met. Metallogr. 2014. Vol. 115. Iss. 3. P. 286— 294. DOI: 10.1134/S0031918X13120107.

24. Akopyan T.K., Belov N.A. Approaches to the design of the new high-strength casting aluminum alloys of 7xxx series with high iron content. Non-Ferr. Met. 2016. No. 1. P. 20—27. DOI: 10.17580/nfm.2016.01.04.

25. Naumova E.A. Use of calcium in alloys: from modifying to alloying. Russ. J. Non—Ferr. Met. 2018. Vol. 59. No. 3. P. 284—298. DOI: 10.3103/S1067821218030100.

26. Shurkin P.K., Dolbachev A.P., Naumova E.A., Doroshenko V.V. Influence of iron on structure, hardening and physical properties of Al—Zn—Mg—Ca alloys. Tsvetnye metally. 2018. No. 5. P. 69—77 (In Russ.).

27. Belov N. A., Naumova E.A., Akopyan T.K. Eutectic alloys based on the Al—Zn—Mg—Ca system: microstructure, phase composition and hardening. Mater. Sci. Technol. 2017. Vol. 33. Iss. 6. P. 656—666. DOI: 10.1080/02670836.2016.1229847.

28. Belov N.A., Naumova E.A., Akopyan T.K. Eutectic alloys based on aluminum: new alloying systems. Moscow: Ruda i metally, 2016 (In Russ.).

29. Thermo-Calc Software TTAL5 Al-Alloys. URL: www.thermocalc.com (accessed: 17.02.2019).

30. Novikov I.I. Hot tearing tendency of non—ferrous metals and alloys. Moscow.: Nauka, 1966 (In Russ.).

31. Yijie Z., Naiheng M., Hongzhan Y., Songchun L., Haowei W. Effect of Fe on grain refinement of commercial purity aluminum. Mater. Design. 2006. Vol. 27. Iss. 9. P. 794—798. DOI: 10.1016/j.matdes.2005.01.021.

32. Belov N.A., Shurkin P.K. High strength casting aluminum alloy with calcium. Pat. 2691476 (RF). 2019 (In Russ.).


Review

For citations:


Shurkin P.K., Belov N.A., Musin A.F., Aksenov A.A. New high-strength casting aluminum alloy based on the Al–Zn–Mg–Ca–Fe system without requirement for heat treatment. Izvestiya. Non-Ferrous Metallurgy. 2020;(1):48-58. (In Russ.) https://doi.org/10.17073/0021-3438-2020-1-48-58

Views: 1242


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)