Autoclave treatment of cakes after pressure oxidation leaching of chalcopyrite concentrates
https://doi.org/10.17073/0021-3438-2020-1-13-18
Abstract
The existing technologies for copper-porphyry ores enrichment, located in deposits in the Urals of Russia, allow the production of chalcopyrite concentrates of the following composition, %: 21.5 Cu, 24.5 Fe, 26.5 S, 0.4 Pb, 17.6 SiO2, 1.8 CaO, 2–6 Au (ppm), 20– 40 Ag (ppm). A conventional technology for processing such concentrates includes autogenous smelting, matte desulfurization and blister copper refining. Pressure oxidation leaching (POX) is considered the most promising alternative technology for chalcopyrite concentrate processing. The POX of concentrates originated from Mikheevskii GOK allow the production a cake of the following chemical composition, %: 56–65 Fe2O3, 25–30 SiO2, 2.7 Ca, 0.3–1.0 Cu, 2–7 S, 0.6–0.8 Pb, 4–12 Au (ppm), 40–80 Ag (ppm); mass loss was 37–45 %. A standard method of cake cyaniding provides satisfactory indicators of precious metal extraction, but it requires a cumbersome area to be arranged for their processing and offers no solution for residue disposal. In this regard, this paper investigates the method of subsequent cake processing using autoclave treatment (AT) for iron removal. The study shows how the following parameters affect the results of this process: t = 110÷210 °C, H2SO4 = 15÷60 g/dm3, τ = 45÷ ÷120 min. A statistic description of the AT operation is developed. Recommended AT conditions (t = 110 °C, H2SO4 = 60 g/dm3, τ = 60÷100 min) allow to obtain the POX cake yield reduced to 30–35 % of the source material with the following composition, %: 28–33 Fe2O3, 47–53 SiO2, 2–5 Ca, 0.6–2.0 Cu, 0.8–1.5 Pb, 2–8 S. At the same time, the content of precious metals in the cake reaches 12–16 Au (ppm) and 80–120 Ag (ppm). Options for using AT products are proposed.
About the Authors
A. V. KritskiiRussian Federation
Postgraduate student, engineer, assistant of the Department of metallurgy of non-ferrous metals
620002, Russia, Yekaterinburg, Mira str., 19
M. A. Tretyak
Russian Federation
Student of the Department metallurgy of non-ferrous metals
Yekaterinburg
К. A. Karimov
Russian Federation
Cand. Sci. (Tech.), head of laboratory of the Department of metallurgy of non-ferrous metals
Yekaterinburg
S. S. Naboichenko
Russian Federation
Dr. Sci (Tech.), professor-consultant of the Department of metallurgy of non-ferrous metals
Yekaterinburg
References
1. Graeme J., Jameson E. Coarse chalcopyrite recovery in a universal froth flotation machine. Miner. Eng. 2019. Vol. 134. P. 118—133. https://doi.org/10.1016/j.mineng.2019.01.024.
2. Chipfunhua D., Chipfunhua D., Bournivalc G., Dickieb S., Atac S. Performance characterisation of new frothers for sulphide mineral f lotation. Miner. Eng. 2019. Vol. 131. P. 272—279. https://doi.org/10.1016/j.mineng.2018.11.014.
3. Dreisinger D. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy. 2006. Vol. 83. P. 10—20. https://doi.org/10.1016/j.hydromet.2006.03.032.
4. Tanda B., Eksteen J., Oraby E., O’Connor G. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner. Eng. 2019. Vol. 135. P. 118—128. https://doi.org/10.1016/j.mineng.2019.02.035.
5. Zhao H., Zhang X., Qian L., Sun M., Yang Y., Zhang Y., Wang J., Kim H., Qiu G. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner. Eng. 2019. Vol. 136. P. 140—154. https://doi.org/10.1016/j.mineng.2019.03.014.
6. Marsden J., Wilmot J., Hazen N. Medium-temperature pressure leaching of copper concentrates. Pt. I: Chemistry and initial process development. Min. Metall. Explor. 2007a. Vol. 24 (4). P. 193—204. https://doi.org/10.1007/bf03403368.
7. Watling H. Chalcopyrite hydrometallurgy at atmospheric pressure. 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options. Hydrometallurgy. 2013. Vol. 140. P. 163—180. https://doi.org/10.1016/j.hydromet.2013.09.013.
8. Watling H.R. Chalcopyrite hydrometallurgy at atmospheric pressure. 2. Review of acidic chloride process options. Hydrometallurgy. 2014. Vol. 146. P. 96—110. https://doi.org/10.1016/j.hydromet.2014.03.013.
9. Schippers A., Hedrich S., Vasters J., Drobe M., Sand W., Willscher S. Biomining: metal recovery from ores with microorganisms. Adv. Biochem. Eng./Biotechnol. 2013. Vol. 1. P. 1—47. DOI: 10.1007/10_2013_216.
10. Padilla R., Vega D., Ruiz M. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media. Hydrometallurgy. 2007. Vol. 86. P. 80—88. DOI: 10.1016/j.hydromet.2006.10.006.
11. McDonald R., Muir D. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy. 2007. Vol. 86. P. 191—205. https://doi.org/10.1016/j.hydromet.2006.11.015.
12. Marsden J., Wilmot J., Hazen N. Medium-temperature pressure leaching of copper concentrates. Pt. II. Development of direct electrowinning and an acid-autogenous process. Min. Metall. Explor. 2007b. Vol. 24 (4). P. 205— 217. https://doi.org/10.1007/BF03403369.
13. Marsden J., Wilmot J., Mathern D. Medium-temperature pressure leaching of copper concentrates. Pt. III. Commercial demonstration at Bagdad, Arizona. Min. Metall. Explor. 2007c. Vol. 24 (4). P. 218—225. https://doi.org/10.1007/BF03403371.
14. Marsden J., Wilmot J., Smith R. Medium-temperature pressure leaching of copper concentrates. Pt. IV. Application at Morenci, Arizona. Min. Metall. Explor. 2007d. Vol. 24 (4). P. 226—236. https://doi.org/10.1007/BF03403371.
15. Cheng T., Demopoulos G., Shibachi Y., Masuda H. The precipitation chemistry and performance of the Akita hematite process — An integrated laboratory and industrial scale study. In: Electrometallurgy and environmental hydrometallurgy: Proc. Hydrometallurgy Intern. Symp. (Vancouver, Canada). TMS. 2003. Vol. 2. P. 1657—1674.
16. Umetsu V., Tozawa K., Sasaki K. The hydrolysis of ferric sulfate solutions at elevated temperatures. Canad. Metall. Quart. 1977. Vol. 16. P. 111—117.
17. Ismael M., Carvalho J. Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Miner. Eng. 2003. Vol. 16 (1). P. 31—39.
18. Onozaki A., Sato K., Kuramochi S. Effect of some impurities on iron precipitation at the Iijima Zinc Refinery. In: Iron control in hydrometallurgy. Eds. J.E. Dutrizac, A.J. Monhemius. West Sussex (England): Ellis Horwood Limited, 1986. Vol. 1. P. 742—752.
19. Kritskii A.V., Naboichenko S.S. Autoclavic oxidative leaching of the chalcopyrite concentrate of the Miheevsky mining and processing plant in sulfuric acid media. Tsvetnye metally. 2019. No. 8. P. 12—17 (In Russ.).
20. Neustroev V.I., Naboichenko S.S., Khudyakov I.F. Hydrothermal treatment of polymetallic chalcopyrite concentrates with copper sulfate. Tsvetnye metally. 1982. No. 6. P. 40—43 (In Russ.).
21. Naboichenko S.S., Neustroev V.I., Pinigin V.K., Khudyakov I.F. About the hydrothermal interaction of chalcopyrite with copper sulfate. Tsvetnye metally. 1978. No. 4. P. 8—11 (In Russ.).
22. Stas’ N.F. Studies on interaction of iron ores with acids. Fundamental’nye issledovaniya. 2013. No. 1. P. 422—427 (In Russ.). https://www.fundamental-research.ru/ru/article/view?id=30964.
23. Artamonova I.V., Gorichev A.D., Izotov A.D., Pichugina N.M., Stepanov V.M. Using a probabilistic approach to describe the kinetic curves of dissolution and leaching of magnetite. Izvestiya MSTU «MAMI». 2009. No. 1 (7). P. 166—173 (In Russ.). https://cyberleninka.ru/article/n/ispolzovanie-veroyatnostnogo-podhoda-dlya-opisaniyakineticheskih-krivyh-rastvoreniya-i-vyschelachivaniyamagnetita.
Review
For citations:
Kritskii A.V., Tretyak M.A., Karimov К.A., Naboichenko S.S. Autoclave treatment of cakes after pressure oxidation leaching of chalcopyrite concentrates. Izvestiya. Non-Ferrous Metallurgy. 2020;(1):13-18. (In Russ.) https://doi.org/10.17073/0021-3438-2020-1-13-18