агрегатами дробления и измельчения), можно рассматривать данную технологию как высокоперспективную.

ЛИТЕРАТУРА

- 1. *Дементьев В.Е., Дружина Г.Я., Гудков С.С.* Кучное выщелачивание золота и серебра. Иркутск: ОАО «Иргиредмет», 2004.
- 2. *Минеев Г.Г., Леонов С.Б.* Кучное выщелачивание золотосодержащих руд. Иркутск: ИрГТУ, 1997.
- 3. *Леонов С.Б., Минеев Г.Г., Жучков И.А.* Гидрометаллургия. Рудоподготовка и выщелачивание. Иркутск: ИрГТУ, 1998.
- 4. *Vanderbeek J.L.* HGPR Implementation Cerro Verde. SAG 2006, Canada, Vancouver, 2006.
- 5. *Фазлуллин М.И*. Кучное выщелачивание благородных металлов. М.: Академия горных наук, 2001.
- 6. *Федотов П.К.* Межчастичное разрушение руды. М.: Геоинформмарк, 2011.
- 7. *Mayerhauser D.* // Ceramic Forum Inter. 1990. Vol. 67, № 7/8. P. 335—341.

УДК 669.715.541.127

КИНЕТИКА ОКИСЛЕНИЯ СПЛАВА АК7М2 + 0,05%Sr, ЛЕГИРОВАННОГО ГЕРМАНИЕМ

© 2014 г. **А.Э. Бердиев, И.Н. Ганиев, С.С. Гулов**

Институт химии им. В.И. Никитина АН Республики Таджикистан, г. Душанбе Таджикский технический университет им. акад. М.С. Осими, г. Душанбе

Статья поступила в редакцию 29.03.13 г., доработана 03.05.13 г., подписана в печать 16.05.13 г.

Термогравиметрическим методом исследована кинетика окисления твердого сплава AK7M2 + 0,05%Sr, легированного германием, в атмосфере воздуха при температурах 773, 798 и 823 К. Выявлено, что добавки до 0,05 мас.% Ge уменьшают скорость окисления, о чем свидетельствует увеличение величины кажущейся энергии активации процесса окисления от 14,7 до 79,8 кДж/моль, которая с повышением содержания Ge до 1,0 мас.% снова падает до 25,2 кДж/моль. Величина истинной скорости окисления меняется в пределах $(4,30\div6,00)\cdot10^{-4}$ кг/ $(m^2\cdot c)$ в зависимости от количества легирующего компонента. В продуктах окисления сплавов наряду с γ -Al $_2O_3$ также обнаружены фазы SiO $_2$ и GeO $_2$.

Ключевые слова: сплав АК7M2, стронций, германий, термогравиметрический метод, кинетика окисления, температурная зависимость, истинная скорость окисления, энергия активации.

There was investigated by means of thermogravimetric method kinetics of oxidation of cutting alloy AK7M2 + 0,05%Sr, germanium alloyed, in air at temperature 773, 798 and 823 K. There was identified that additives until 0,05 wt.% Ge will be reduced oxidation rate, as evidenced by increasing of value of apparent activation energy of oxidation process from 14,7 to 79,8 kJ/mol, which with increasing of Ge content until 1,0 wt.% again decreased to 25,2 kJ/mol. The value of actual velocity of oxidation is changed in the range $(4,30 \div 6,00) \cdot 10^{-4}$ kg/(m²·c) depending on quantity of alloying component. In products of alloys oxidation together with γ -Al₂O₃ looked up phases SiO₂ and GeO₂.

Keywords: alloy AK7M2, strontium, germanium, thermogravimetric method, kinetics of oxidation, temperature dependence, true oxidation rate, activation energy.

Бердиев А.Э. – канд. техн. наук, ст. науч. сотр. лаборатории коррозионно-стойких материалов Института химии (734063, Респ. Таджикистан, г. Душанбе, ул. Айни, 299/2). E-mail: berdiev75@mail.ru.

Ганиев И.Н. – докт. хим. наук, проф., акад. АН Респ. Таджикистан, зав. той же лабораторией. E-mail: ganiev48@mail.ru.

Гулов С.С. – доцент кафедры материаловедения, металлургических машин и оборудования Таджикского технического ун-та (734042, Респ. Таджикистан, г. Душанбе, пр-т Акад. Раджабова, 10a). E-mail: gulov72@mail.ru.

ВВЕДЕНИЕ

Структуры бинарных сплавов системы Al—Si при обычных условиях кристаллизации состоят из двух фаз: твердого раствора кремния в алюминии (α -Al) и твердого раствора алюминия в кремнии (в силу низкой растворимости Al в Si называемого кристаллическим кремнием), находящихся в эвтектическом равновесии [1—3]. Твердый раствор на основе алюминия представляет собой сравнительно мягкую и пластичную фазу, а кремний характеризуется высокой твердостью и хрупкостью, поэтому он и выполняет функцию уплотнителя в бинарных силуминах [4—7].

Сплав АК7М2 используют для получения разнообразными способами литья изделий с повышенными физико-механическими и литейными свойствами. Материал нашел широкое применение при производстве деталей шахтного электрооборудования, электрических автоклавов, электродвигателей, газовой аппаратуры и генераторов для автомобильных и тракторных двигателей.

Цель настоящей работы состояла в исследовании влияния добавок германия на кинетику окисления модифицированного стронцием сплава АК7М2, а также в установлении механизма, кинетических и энергетических параметров процесса окисления.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для получения образцов были использованы: алюминий марки А995 (ГОСТ 110669-01), кремний кристаллический (ГОСТ 25347-82), медь марки МО9995 (ГОСТ 97172-82), стронций марки СтМ1, германий монокристаллический. Синтез навески сплавов массой 20 г осуществляли в вакуумной печи сопротивления типа СНВ-1.3-1/16ИЗ в атмосфере гелия под избыточным давлением 0,5 МПа. Шихтовка сплавов проводилась с учетом угара металлов. Состав полученных материалов выборочно контролировался химическим анализом, а также взвешиванием образцов до и после сплавления. В дальнейшем исследованию подвергались те из них, у которых разница в массе не превышала 2 % (отн.). Полученные сплавы изучались термогравиметрическим методом на установке, принцип действия которой описан в работах [8—10].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

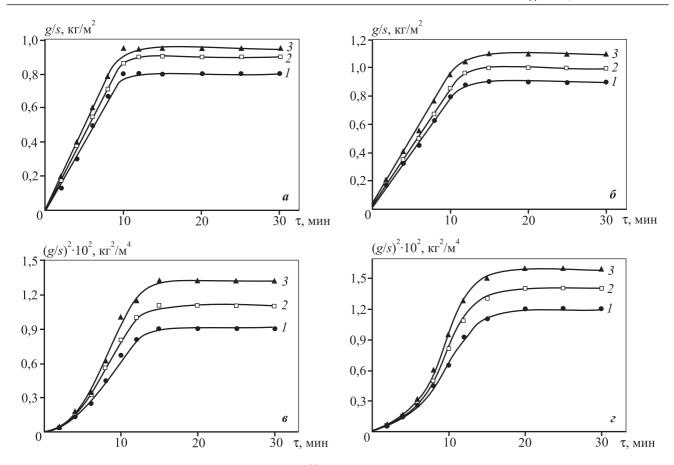

Для исследования влияния добавки германия в сплав AK7M2 + 0.05%Sr на кинетику его окисления

Таблица 1 Кинетические и энергетические параметры процесса окисления твердого сплава AK7M2 + 0,05%Sr, легированного германием

Содержание Ge, мас.%	<i>T</i> , K	<i>k</i> ·10 ⁴ , кг/(м ² ·с)	$E_a^{ m \kappa aw},$ кДж/моль
	773	4,30	
0	798	4,56	14,7
	823	4,80	
	773	3,33	
0,05	798	3,70	79,8
	823	4,19	
	773	4,17	
0,3	798	4,26	57,4
	823	4,42	
0,6	773	4,27	
	798	4,48	25,2
	823	4,75	
1,0	773	5,13	
	798	5,45	12,7
	823	6,00	

Таблица 2 Фазовый состав продуктов окисления сплава AK7M2 + 0,05%Sr, легированного германием

Содержание Ge, мас.%	Частоты ИК-спектров, cm^{-1}	Фазовый состав*	
0	465, 505, 670, 775, 1095	γ -Al ₂ O ₃	
	470, 590, 730, 960, 1035,1060	SiO_2	
	540, 655, 830	$SrO.6Al_2O_3$	
0,05	465, 615, 750, 1100, 700,	γ -Al ₂ O ₃	
	470, 590, 730, 800, 1025, 1160	SiO ₂ , Al ₂ SiO ₅	
	445, 545, 575, 810	SrO·6Al ₂ O ₃	
	522, 530, 555, 600, 640, 732	${\rm GeO_2}$	
0,3	460, 610, 650, 1100,	γ -Al ₂ O ₃	
	470, 590, 700, 730, 800, 1160	SiO ₂ , Al ₂ SiO ₅	
	522, 530, 555, 600, 640, 732	${\rm GeO_2}$	
0,6	460, 610, 1100,	γ -Al ₂ O ₃	
	470,700, 800, 960, 1035, 1160	SiO ₂ , Al ₂ SiO ₅	
	522, 530, 555, 600, 640, 732	${\rm GeO_2}$	
1,0	460, 600, 1100,	γ-Al ₂ O ₃	
	435, 470, 700, 800, 810, 1160	SiO ₂ , Al ₂ SiO ₅ ,	
	522, 530, 555, 600, 640, 732	${\rm GeO_2}$	
*По данным рентгенофазового анализа.			

Кинетические кривые окисления сплава AK7M2 + 0,05%Sr без модифицирования (\boldsymbol{a}) и с добавкой Ge в количестве, мас.%: 0,3 ($\boldsymbol{\delta}$), 0,6 (\boldsymbol{s}), 1,0 ($\boldsymbol{\epsilon}$) T=773 K (\boldsymbol{I}), 798 K (\boldsymbol{Z}) и 823 K (\boldsymbol{Z})

была синтезирована серия образцов, содержащих 0,05—1,0 мас.% Ge. Эксперименты проводили в атмосфере воздуха при температурах 773, 798 и 823 К. Результаты исследования представлены на рисунке и в таблицах.

Кинетические кривые окисления твердого сплава AK7M2 + 0,05%Sr (см. рис. a) характеризуются растянутым процессом формирования оксидной пленки на начальном этапе процесса. Скорость окисления данного образца в зависимости от времени и температуры незначительно увеличивается. Однако рост его удельной массы приблизительно к 15-й минуте прекращается, она становится равной $g/s = 1,0 \text{ кг/м}^2$ при T = 823 K.

Истинная скорость окисления, определенная графическим путем по касательным, проведенным от начала координат к кривым I—3, и рассчитанная по формуле $k = (g/s)/\tau$, составила соответственно $4.30\cdot10^{-4}$, $4.56\cdot10^{-4}$ и $4.80\cdot10^{-4}$ кг/(м $^2\cdot$ с) при температурах 773, 798 и 823 К. Кажущаяся энергия активации рассматриваемого процесса, вычисленная по

тангенсу угла наклона прямой зависимости $\lg k - 1/T$, составила $E_a^{\rm Kalk} = 14,7$ кДж/моль (табл. 1).

Результирующие кривые окисления образцов твердого сплава AK7M2 + 0,05%Sr, модифицированного германием, характеризующие изменение массы, отнесенное к единице поверхности, во времени, приведены на рис. e, e. Видно, что за одинаковое время окисления величина e/s = 0,8÷1,36 кг/м². Вместе с тем в зависимости от состава образцов имеется некоторое различие в характере протекания процесса.

Данные табл. 1 свидетельствуют, что с ростом температуры повышается скорость окисления исследуемых сплавов. Однако механизм процесса со временем может измениться. Для образца, содержащего 0,3 мас.% Ge, наблюдается явная тенденция к понижению скорости окисления, и после 15 мин она становится близкой к нулю. В этом случае имеет место наглядный пример проявления защитных свойств пленки, как это происходит при окислении исходного сплава AK7M2 + 0,05%Sr, когда энергети-

ческие затруднения лимитирующего этапа настолько велики, что приводят к прекращению процесса (см. рис. a и δ).

Судя по нелинейной зависимости $(g/s)^2 - \tau$ (см. рис. θ и ϵ), можно заключить, что характер окисления изучаемых материалов подчиняется логарифмическому закону.

Продукты окисления сплавов исследовались с использованием различных методов физико-химического анализа. По данным РФА и ИК-спектроскопии образца AK7M2 + 0.05%Sr в продуктах окисления доминирующими фазами являются γ - Al_2O_3 , SiO_2 и Al_2SiO_5 , а также сложный оксид состава $SrO\cdot6Al_2O_3$, что подтверждается наличием соответствующих им полос поглощения. В сплавах, содержащих германий, обнаружены полосы при $\nu = 522, 530, 555, 600, 640$ и 732 см $^{-1}$, которые отнесены к GeO_2 (см. табл. 2).

ЗАКЛЮЧЕНИЕ

Методом термогравиметрии показано, что окисление сплава AK1M2, легированного германием, протекает по логарифмическому закону. Истинная скорость окисления сплавов имеет порядок $10^{-4}\,\mathrm{kr/(m^2 \cdot c)}$. Кажущаяся энергия активации в зависимости от состава сплавов изменяется от 14,7 до 79,8 кДж/моль при содержании германия 0,05 мас.% и затем снижается до 12,7 кДж/моль при дальнейшем его увеличении. Выявлено, что сплавы при малых добавках Ge характеризуются наименьшим значением истинной скорости окисления.

По данным ИК-спектроскопии показано, что в продуктах окисления сплавов доминирующей фазой является γ -Al₂O₃, также обнаружены полосы поглощения, относящиеся к SiO₂ и GeO₂.

ЛИТЕРАТУРА

- 1. *Мондольфо Л.Ф.* Структура и свойства алюминиевых сплавов. М.: Металлургия, 1979.
- 2. *Ганиев И.Н.* Модифицирование силуминов стронцием. Минск: Наука и техника, 1985.
- 3. *Ганиев И.Н., Вахобов А.В., Джураев Т.Д.* // Изв. АН СССР. Металлы, 1977. № 4. С. 215—219.
- 4. *Ганиев И.Н., Семёнова О.Н., Вахобов А.В.* // Автомобильная промышленность. 1984. № 2. С. 27—29.
- Ганиев И.Н., Семёнова О.Н. // Передовой опыт (ДСП). 1988. С. 32—35.
- 6. *Ганиев И.Н., Вахобов А.В., Джураев Т.Д., Алиджонов Ф.* // Докл. АН Тадж. ССР. 1976. Т. 19, № 11. С. 51—54.
- 7. Бердиев А.Э., Ганиев И.Н., Гулов С.С., Сангов М.М. // Изв. вузов. Химия и химическая технология. 2013. Т. 56, № 3. С. 28—30.
- 8. *Белоусов Н.В., Денисов В.М., Истомин С.А.* и др. Взаимодействие жидких металлов и сплавов с кислородом. Екатеринбург: УрО РАН, 2004.
- 9. Бердиев А.Э., Ганиев И.Н., Гулов С.С. Силумины, модифицированные элементами подгруппы германия и стронция. Берлин: LAP LAMBERT Acad. Publ., 2011.
- Бердиев А.Э., Ганиев И.Н., Бадурдинов Т.С., Гулов С.С. // Приднепровский научный вестник. 2013. № 8(144). С. 1—14.