Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and properties of coarse-grained WC-Со hard metals with extra homogeneous microstructure

https://doi.org/10.17073/0021-3438-2019-4-70-78

Abstract

The structure and properties of coarse-grained WC-6%Co hard metals with carbon deficiency from 0,11 to 1,31 % obtained from narrow fraction tungsten carbide powder with a grain size of 5 to 15 pm were studied with respect to the stoichiometric ratio. According to the results of metallographic analysis, 1390 to 1420 °C sintering temperatures provide a non-porous alloy state with normal carbon content, while alloys with lower carbon content feature considerable porosity. It is found that hard metals with less than 0,02 % residual porosity can be obtained at sintering temperatures of 1450-1475 °С regardless of the carbon content. It is shown that alloys with 0,11—0,91 % carbon deficiency have a two-phase structure, while the alloy with 1,31 % carbon deficiency contains n phase inclusions in addition to WC and γ phase. It is determined that lower carbon content slows down the tungsten carbide grain growth process during liquid-phase sintering. EDX analysis was used to determine the concentration of tungsten dissolved in the binder phase — 10, 12, 15 and 19 wt.% for hard metals with normal, low, medium and high carbon deficiency, respectively. Narrow fraction WC powders allow obtaining hard metals with rounded grains having a form factor of about 0,77. The alloy with 0,91 % carbon deficiency with respect to the stoichiometric ratio had the best combination of hardness and toughness (11,1 GPa and 16,0 MPa-m1/2).

About the Authors

E. N. Avdeenko
National University of Science and Technology«MISIS»
Russian Federation

Postgraduate student, Department of powder metallurgy and multifunctional coatings (PMaMC), NUST «MISIS»; Engineer, Research & education center of SHS MISIS—ISMAN.

119049, Moscow, Leninkiy pr., 4



E. I. Zamulaeva
National University of Science and Technology«MISIS»
Russian Federation

Cand. Sci. (Tech.), Researcher, Scientific-education center of SHS MISIS—ISMAN.

119049, Moscow, Leninkiy pr., 4



A. A. Zaitsev
National University of Science and Technology«MISIS»
Russian Federation

Cand. Sci. (Tech.), Assistant professor, Department of PMaMC, NUST «MISIS»; Senior researcher of Scientific-education center of SHS MISIS—ISMAN.

119049, Moscow, Leninkiy pr., 4



I. Yu. Konyashin
National University of Science and Technology«MISIS»
Russian Federation

Cand. Sci. (Tech.), Leading expert, Department PMaMC, NUST «MISIS».

119049, Moscow, Leninkiy pr., 4



E. A. Levashov
National University of Science and Technology«MISIS»
Russian Federation

Dr. Sci. (Tech.), Prof., Acad. of Russian Academy of Natural Science, Head of the Department of PMaMC, Head of Scientific-education center of SHS MISIS—ISMAN.

119049, Moscow, Leninkiy pr., 4



References

1. Upadhyaya G.S. Materials science of cemented carbides — An overview. Mater. Design. 2001. Vol. 22. No. 6. P. 483—489.

2. Jose Garcia, Veronica Collado Cipres, Andreas Blomqvist, Bartek Kaplan. Cemented carbide microstructures: A review. Int. J. Refract. Met. Hard Mater. 2019. Vol. 80. No. 1. P. 40—68.

3. Rumman Md Raihanuzzaman, Zonghan Xie, Soon Jik Hong, Reza Ghomashchi. Powder refinement, consolidation and mechanical properties of cemented carbides — An overview. Powder Technol. 2014. Vol. 261. P. 1—13.

4. Exner H.E. Physical and chemical nature of cemented carbides. Int. Met. Rev. 1979. Vol. 24. P. 149—173.

5. Gille G., Szesny B., Dreyer K., van den Berg H., Schmidt J., Gestrich T., Leitner G. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int. J. Refract. Met. Hard Mater. 2002. Vol. 20. No. 1. P. 3—22.

6. Roebuck B. Extrapolating hardness-structure property maps in WC/Co hardmetals. Int. J. Refract. Met. Hard Mater. 2006. Vol. 24. No. 1-2. P. 101—108.

7. Roebuck B., Gee M.G., Morrell R. Hardmetals — microstructural design, testing and property maps. In: Proc. of the 15-th Inter. Plansee seminar (Eds. Kneringer G., Roedhammer P., Wildner H.). 2001. Vol. 4. P. 245— 266.

8. Beste U., Jacobson S., Hogmark S. Rock penetration into cemented carbide drill buttons during rock drilling. Wear. 2008. Vol. 264. No. 11-12. P. 1142—1151.

9. Konyashin I., Ries B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Pt. II: Laboratory performance tests on rock cutting and drilling. Int. J. Refract. Met. Hard Mater. 2014. Vol. 45. No. 1-2. P. 230—237.

10. Konyashin I., Schafer F., Cooper R., Ries B., Mayer J., Weirich T. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction. Int. J. Refract. Met. Hard Mater. 2005. Vol. 23. No. 4-6. P. 225— 232.

11. Nie Hongbo, Zeng Qisen, Zheng Jianping, Wen Xiao, Yu Yang. The preparation, preparation mechanism and properties of extra coarse-grained WC—Co hardmetals. Metal Powder Report. 2017. Vol. 72. No. 3. P. 188—194.

12. Konyashin I., Ries B., Hlawatschek S., Mazilkin A. Novel industrial hardmetals for mining, construction and wear applications. Int. J. Refract. Met. Hard Mater. 2018. Vol. 71. No. 1. P. 357—365.

13. Wei Su, Yexi Sun, Huifeng Wang, Xianqi Zhang, Jian-ming Ruan. Preparation and sintering of WC—Co composite powders for coarse grained WC—8Co hardmetals. Int. J. Refract. Met. Hard Mater. 2014. Vol. 45. No. 3. P. 80—85.

14. Konyashin I., Ries B., Lachmann F. Near-nano WC—Co hardmetals: Will they substitute conventional coarsegrained mining grades? Int. J. Refract. Met. Hard Mater. 2010. Vol. 28. No. 4. P. 489—497.

15. Wei Su, Yexi Sun, Jiao Feng, Jue Liu, Jianming Ruan. Influences of the preparation methods of WC—Co powders on the sintering and microstructure of coarse grained WC—8Co hardmetals. Int. J. Refract. Met. Hard Mater. 2015. Vol. 48. No. 2. P. 369—375.

16. Wei Su, Ye-xi Sun, Hai-lin Yang, Xian-qi Zhang, Jian-ming Ruan. Effects of TaC on microstructure and mechanical properties of coarse grained WC—9Co cemented carbides. Trans. Nonferr. Met. Soc. China. 2015. Vol. 25. No. 4. P. 1194—1199.

17. Ivensen V.A., Goldberg Z.A., Ehjduk O.N., Falkovskij V.A. Hardmetals: Collection of scientific papers VNIITS. No. 6. Moscow: Metallurgiya, 1965 (In Russ.).

18. Ivensen V.A., Loseva S.S., Pivovarov L.H. Some regularities deformation sintered hardmetals. Poroshkovaya me-tallurgiya. 1964. No. 4. P. 43—56 (In Russ.).

19. Ivensen V.A., Ehjduk O.N., Artemeva S.I. Hardmetals: Collection of scientific papers VNIITS. No. 8. Moscow: Metallurgiya, 1969 (In Russ.).

20. Sigl L., Exner H., Fischmeister H. Characterization of fracture processes and fracture relevant parameters in WC—Co hardmetals. Sci. Hard Mater. 1984. Vol. 75. P. 631—644.

21. Roebuck B., Bennett E.G. Phase size distribution in WC/ Co hardmetal. Metallography. 1986. Vol. 19. No. 1. P. 27— 47.

22. Exner H.E. Methods and significance of particle and grain-size control in cemented carbide technology. Powder Metallurgy. 1970. Vol. 13. P. 429—448.

23. Avdeenko E. N., Zamulaeva E. I., Zaitsev A.A. Investigation of ball milling and classification of coarse-grained tungsten carbide powders. Tsvet. Metally. 2018. No. 8. P. 90—96.

24. Konyashin I., Hlawatschek S., Ries B., Lachmann F., Wei-rich T., Dorn F., Sologubenko A. On the mechanism of WC coarsening in WC—Co hardmetals with various carbon contents. Int. J. Refract. Met. Hard Mater. 2009. Vol. 27. No. 2. P. 234—243.


Review

For citations:


Avdeenko E.N., Zamulaeva E.I., Zaitsev A.A., Konyashin I.Yu., Levashov E.A. Structure and properties of coarse-grained WC-Со hard metals with extra homogeneous microstructure. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):70-78. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-70-78

Views: 746


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)