Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Thermal stability of Al—0,05 vo1.% Al2O3 nanocomposite fabricated by accumulative roll bonding

https://doi.org/10.17073/0021-3438-2019-4-48-56

Abstract

The paper studies the microstructure and microhardness evolution of the Al—0,05vol.%nAl2O3nanocomposite (where nAl2O3 are alumina nanoparticles) and aluminum without nanoparticles fabricated by accumulative roll bonding as a result of annealing at 373— 573 K. Ball-shaped Al2O3 nanoparticles (average diameter of 50 nm) were introduced between the rolled sheets of commercially pure aluminium during the first to fourth rolling cycles to obtain the nanocomposite. The fifth to tenth rolling cycles were carried out without nanoparticles. The average size and aspect ratio of elements with grain-subgrain structures in the as-processed state and after annealing at 473 K were measured using transmission electron microscopy. It is shown that the nanocomposite microhardness is 50—13 % higher than the respective HV value for aluminum at all studied annealing temperatures. The main factor of the higher nanocomposite microhardness is dispersed hardening by Al2O3 nanoparticles. The contribution of substructure and grain boundary hardening is the same for both materials. The thermal stability of nanocomposite microhardness is only ~25 K higher than that of aluminum due to the heterogeneous distribution of nanoparticles in the matrix and their small volume fraction. An additional factor is an inherently high thermal stability of an ultrafine-grained structure formed by accumulative roll bonding with respect to other methods of severe plastic deformation. It was found that most of Al2O3 nanoparticles remain at nanocomposite grain boundaries after annealing at 473 K, so Al2O3 nanoparticles can fix the boundary up to at least 473 K under the studied conditions.

About the Authors

K. V. Ivanov
Institute of Strength Physics and Materials Science
Russian Federation

Dr. Sci. (Phys.-Math.), Leading research scientist, Laboratory of composite materials, ISPMS SB RAS.

634055, Tomsk, Akademichesky pr., 2/4



E. A. Glazkova
Institute of Strength Physics and Materials Science
Russian Federation

Cand. Sci. (Chem.), Senior research scientist, Laboratory of physical chemistry of ultrafine materials, ISPMS SB RAS.

634055, Tomsk, Akademichesky pr., 2/4



S. V. Fortuna
Institute of Strength Physics and Materials Science
Russian Federation

Cand. Sci. (Tech .), Senior research scientist, Laboratory of physics of surface hardening, ISPMS SB RAS.

634055, Tomsk, Akademichesky pr., 2/4



T. A. Kalashnikova
Institute of Strength Physics and Materials Science
Russian Federation

Engineer, Laboratory of quality control for materials and structures, ISPMS SB RAS.

634055, Tomsk, Akademichesky pr., 2/4



References

1. Miracle D.B. Metal matrix composites — From science to technological significance. Composites Sci. Technol. 2005. Vol. 65. P. 2526—2540. DOI: 10.1016/j.compscitech.2005.05.027.

2. Bodunrin M.O., Alaneme K.K., Chown L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015. Vol. 4. P. 434—445. DOI: 10.1016/j.jmrt.2015.05.003.

3. Berezovsky V.V. Application of dispersion strengthened metal composite materials based on aluminum alloy reinforced with SiC particles in aviation industry. Novosti materialovedeniya. Nauka i tekhnika. 2013. No. 4. P. 1—11 (In Russ.).

4. Suryanarayana C, Nasser A. Mechanically alloyed nanocomposites. Progr. Mater. Sci. 2013. Vol. 58. P. 383—502. DOI: 10.1016/j.pmatsci.2012.10.001.

5. Mousavian R.T, Khosroshahi R.A., Yazdani S, Brabazon D, Boostani A.F. Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles.

6. Mater. Des. 2016. Vol. 89. P. 58—70. DOI: 10.1016/j.matdes.2015.09.130.

7. Behm N, Yang H, Shen J., Ma K, Kecskes L.J., Laver-nia E.J., Schoenung J.M., Wei Q. Quasi-static and high-rate mechanical behavior of aluminum-based MMC reinforced with boron carbide of various length scales. Mater. Sci. Eng. A. 2016. Vol. 650. P. 305—316. DOI: 10.1016/j.msea.2015.10.064.

8. Tjong S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 2007. Vol. 9. P. 639—652. DOI: 10.1002/adem.200700106.

9. Casati R, Vedani M. Metal matrix composites reinforced by nano-particles — A review. Metals. 2014. Vol. 4. P. 65— 83. DOI: 10.3390/met4010065.

10. Balog M, Hu T, Krizik P., Riglos M. V.C., Saller B.D., Yang H, Schoenung J.M., Lavernia E.J. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous A^O3 network. Mater. Sci. Eng. A. 2015. Vol. 648. P. 61—71. DOI: 10.1016/j.msea.2015.09.037.

11. SreeManu K.M., ArunKumarS, Rajan T.P.D., RiyasMohammed M, Pai B.C. Effect of alumina nanoparticle on strengthening of Al—Si alloy through dendrite refinement, interfacial bonding and dislocation bowing. J. Alloys Compd. 2017. Vol. 712. P. 394—405. DOI: 10.1016/j.jallcom.2017.04.104.

12. Islamgaliev R.K., Buchgraber W, Kolobov Yu.R, Amirkhanov N.M., Sergueeva A.V, Ivanov K.V, Grabovetskaya G.P. Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation. Mater. Sci. Eng. A. 2001. Vol. 319-321. P. 872—876.

13. Bachmaier A., Pippan R. Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 2013. Vol. 58. P. 41—62. DOI: 10.1179/1743280412Y.0000000003.

14. Schmidt C.W, Knieke C, Maier V, Hoppel H.W, Peukert W, Goken M. Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scripta Mater. 2011. Vol. 64. P. 245—248. DOI: 10.1016/j.scriptamat.2010.10.013.

15. Soltani M.A., Jamaati R, Toroghinejad M.R. The influence of TiO2 nano-particles on bond strength of cold roll bonded aluminum strips. Mater. Sci. Eng. A. 2012. Vol. 550. P. 367—374. DOI: 10.1016/j.msea.2012.04.089.

16. Jamaati R., Toroghinejad M.R., Edris H. Fabrication of nanoparticle strengthened IF steel via ARB process. Mater. Sci. Eng. A. 2013. Vol. 583. P. 20—24. DOI: 10.1016/j.msea.2013.06.068.

17. Jamaati R, Toroghinejad M.R., Edris H. Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process. Mater. Des. 2014. Vol. 54. P. 168—173. DOI: 10.1016/j.matdes.2013.08.033.

18. WangX., Liu W., HuX., Wu K. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater. Sci. Eng. A. 2018. Vol. 715. P. 49—61. DOI: 10.1016/j.msea.2017.12.075.

19. Kolobov Yu.R, Grabovetsaya G.P, Ivanov KV, Ivanov M.B. Diffusivity and mechanical properties of bulk nanostructured materials obtained by severe plastic deformation. Khimiya v interesakh ustoychivogo razvitiya. 2002. Vol. 10. P. 111—118 (In Russ.).

20. Lerner M.I., Svarovskaya N.V, Psakhie S.G., Bakina O.V Production technology, characteristics, and some applications of electric-explosion nanopowders of metals. Nanotechnol. in Russia. 2009. Vol. 4. P. 741—757.

21. Liu Z.-K, Chang Y.A. Thermodynamic assessment of the Al—Fe—Si system. Metall. Mater. Trans. A. 1999. Vol. 30A. P. 1081—1095. DOI: 10.1007/s11661-999-0160-3.

22. Ivanov K. V, Fortuna S. V, Kalashnikova T.A., Glazkova E.A. Effect of alumina nanoparticles on the microstructure, texture, and mechanical properties of ultrafine-grained aluminum processed by accumulative roll bonding. Adv. Eng. Mater. 2019. Vol. 21. P. 1701135 (1—6). DOI: 10.1002/adem.201701135.

23. Su L, Lu C, Tieu K, Deng G. Annealing behavior of accumulative roll bonding processed aluminum composites. Steel Res. Int. 2013. Vol. 84. P. 1241—1245. DOI: 10.1002/srin.201300032.

24. Carpenter J.S., Zheng S.J., Zhang R.F., Vogel S.C., Beyerlein I.J., Mara N.A. Thermal stability of Cu—Nb nanolamellar composites fabricated via accumulative roll bonding. Phil. Mag. 2013. Vol. 93. P. 718—735. DOI: 10.1080/14786435.2012.731527.


Review

For citations:


Ivanov K.V., Glazkova E.A., Fortuna S.V., Kalashnikova T.A. Thermal stability of Al—0,05 vo1.% Al2O3 nanocomposite fabricated by accumulative roll bonding. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):48-56. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-48-56

Views: 543


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)