Research of microstructure and mechanical properties in LS59-1A brass submicrovolumes
https://doi.org/10.17073/0021-3438-2019-4-40-47
Abstract
The study covers the microstructure and mechanical properties in submicrovolumes of LS59-1A lead brass. Scanning electron microscopy (EDS) was used for metallographic analysis of the studied sample microstructures. It was found that the LS 59-1A brass microstructure along with the main phases (α phase — solid solution of alloying elements in copper and β phase — solid solution based on the CuZn electronic compound) also contains globular inclusions of free lead (1—2 vol.%) localized on grain boundaries and in interdendritic regions. In addition, exogenous nonmetallic inclusions of CuO + ZnO and pores were found in the microstructure. Oxide inclusions and compounds containing iron and manganese are localized at the boundaries of α and β phases. A nanoindentation method was used to study hardness (Н) and Young’ modulus of α and β phases. An insignificant difference was found between H values for a phase dendrites with respect to the β phase interdendritic space indicating higher homogeneity of LS59-1A ingot mechanical properties. Calculation of additional pressure that occurs at the interface of a and β phases when external force is applied to the material due to a difference in Young’s moduli showed that it is 23 times higher than external force, which can cause destruction of LS59-1A brass ingots during machining. The results obtained are discussed from the standpoint of modern ideas about the metallographic method used to control brass ingot quality under industrial production conditions.
About the Authors
G. A. TkachukRussian Federation
Tkachuk G.A. — Senior lecturer, Department of metrology, standardization and certification UrFU.
620002, Еkaterinburg, Mira str., 19
V. A. Maltsev
Russian Federation
Maltsev V.A. — Dr. Sci. (Tech.), Prof., Director of Design Institute, UrFU.
620002, Еkaterinburg, Mira str., 19
O. A. Chikova
Russian Federation
Chikova O.A. — Dr. Sci. (Phys.-Math.), Prof., Department of physics, UrFU.
620002, Еkaterinburg, Mira str., 19
References
1. Pugacheva N.B., Pankratov A.A., Frolova N.Yu., Kotlya-rov I. V Structural and phase transformations in a + P bra-ses. Russ. Metal. (Metally). 2006. No. 3. P. 239—248.
2. HameedA.H., AbedA.T. Effect of secondary cooling configuration on micro structure of cast in semi-continuous casting of copper and brass. Appl. Mech. Mater. 2014. Vol. 575. P. 8—12.
3. Bagherian E.-R., Fan Y., AbdolvandA., CooperM., Frame B. Investigation of the distribution of lead in three different combinations of brass feedstock. Inter. J. Metalcast. 2016. Vol. 3. P. 338—341.
4. Momeni A., Ebrahimi G.R., Faridi H.R. Effect of chemical composition and processing variables on the hot flow behavior of leaded brass alloys. Mater. Sci. Eng. A. 2015. Vol. 626. P. 1—8.
5. Muikku A., Hartikainen J., Vapalahti S., Tiainen T. Experimental work on possibilities to predict casting defects in LPDC brass castings. Mater. Sci. Forum. 2006. Vol. 508. P. 561—566.
6. Garcia P., Rivera S., Palacios M., Belzunce J. Comparative study of the parameters influencing the machinabil-ity of leaded brasses. Eng. Fail. Anal. 2010. Vol. 17. No. 4. P. 771—776.
7. Amaral L., Quinta R., Silva T.E., Soares R.M.B., Castellanos S.D., de Jesus A.M.P. Effect of lead on the machina-bility of brass alloys using polycrystalline diamond cutting tools. J. Strain Anal. Eng. Design. 2018. Vol. 53. No. 8. P. 602—615.
8. Gane N. The effect of lead on the friction and machining of brass. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 1981. Vol. 43. No. 3. P. 545—566.
9. Vilarinho C., Davim J.P., Soares D., Castro F., Barbosa J. Influence of the chemical composition on the machina-bility of brasses. J. Mater. Proc. Technol. 2005. Vol. 170. No. 1-2. P. 441—447.
10. Waheed A., Ridley N. Microstructure and wear of some high-tensile brasses. J. Mater. Sci. 1994. Vol. 29. No. 6. P. 1692—1699.
11. Han H., Huang X., Wu Y., Qin Y., Cao J. Microstructure and properties of a bismuth-brass. Adv. Mater. Res. 2012. Vol. 486. P. 270—273.
12. Lukac I.J., Bures R., Michalansky F., Lubiscak J. Effect of Mn on machinability of free-cutting brass. Metalurgija. 1993. Vol. 32. No. 4. P. 183—184.
13. Tam P.L., Schultheiss F., Stahl J.E., Nyborg L. Residual stress analysis of machined lead-free and lead-containing brasses. Mater. Sci. Technol. (U.K.). 2016. Vol. 32. No. 17. P. 1789—1793.
14. Schultheiss F., Windmark C., Sjostrand S., Rasmusson M., Stahl J.-E. Machinability and manufacturing cost in low-lead brass. Int. J. Adv. Manufact. Technol. 2018. Vol. 99. No. 9-12. P. 2101—2110.
15. Dutkiewicz J, Masdeu F., Malczewski P., Kukuta A. Microstructure and properties of a + P brass after ECAP processing. Arch. Mater. Sci. Eng. 2009. Vol. 39. No. 2. P. 80—83.
16. Chikova O.A., Reznik P.L., Ovsyannikov B.V. Structure and nanomechanical characteristics of Al—Cu—Mg— Si alloy with partly liquated grain boundaries upon heat treatment. Phys. Met. Metallograph. 2016. Vol. 117. No. 12. P. 1245—1250.
17. Chikova O.A., Konstantinov A.N., Shishkina E.V, Chezga-nov D.S. Influence of the microheterogeneity and crystallization conditions of the Al—50%Sn alloy on the mechanical properties of phase components of the ingot. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 6. P. 505—508.
18. Hofmann U. Model for calculation the mean high temperature flow stress of leaded brasses. Materialwissenschaft und Werkstofftechnik. 2003. Bd. 34. No. 8. S. 746—755.
19. Hofmann U. A failure analysis on the causes of intercrystalline cracks in components made of leaded brass. Pract. Metallograph. 2010. Vol. 47. No. 10. P. 571—593.
20. Lan X., Li K., Wang F., Su Y., Yang M., Liu S., Wang J., Du Y. Preparation of millimeter scale second phase particles in aluminum alloys and determination of their mechanical properties. J. Alloys and Compd. 2019. Vol. 784. P. 68-75.
21. Chen C.-L., Richter A., Thomson R.C. Investigation of mechanical properties of intermetallic phases in multi-component Al-Si alloys using hot-stage nanoindentation. Intermetallics. 2010. Vol. 18. No.4. P. 499-508.
22. Kossman S., Iost A., Chicot D., Mercier D., Serrano-Mu-noz I., Roudet F., Dufrenoy P., Magnier V, Cristol A.-L. Mechanical characterization by multiscale instrumented indentation of highly heterogeneous materials for braking applications. J. Mater. Sci. 2019. Vol. 54. No. 6. P. 46474670.
23. Heidarzadeh A., Saeid T, Klemm V, Chabok A., Pei Y. Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Mater. Design. 2019. Vol. 162. P. 185-197.
24. Mesbah M., Fadaeifard F., Karimzadeh A., Nasiri-Tabrizi B., Rafieerad A., FarajiG., Bushroa A.R. Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing. Met. Mater. Inter. 2016. Vol. 22. No. 6. P. 1098-1107.
25. Tkachuk G.A., Chikova O.A., Maltsev V.A. Examining microstructure of industrial brass blanks with purpose for quality control in respect of defects of technological origin. IOP Conf. Ser. Earth and Environmental Science. 2017. Vol. 87(9). No. 092027.
26. Tkachuk G.A., Shimov V.V., Chikova O.A. Examining the microstructure of industrial leaded brass blanks for quality control. Solid State Phenomena. 2017. Vol. 265. P. 348-351.
27. Pugacheva N.B., Ovchinnikov A.S., Lebed A.V Analysis of defects of industrial brass blanks. Tsvetnye Metally. 2014. No. 10. P. 71-77 (In Russ.).
28. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004. Vol. 19. No. 1. P. 3-20.
29. Golovin Yu.I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review. Phys. Solid State. 2008. Vol. 50. No. 12. P. 2205-2236.
30. Chikova O.A., Shishkina E.V, Petrova A.N., Brodova I.G. Measuring the nanohardness of commercial submicrocrystalline aluminum alloys produced by dynamic pressing. Phys. Met. Metallograph. 2014. Vol. 115. No. 5. P. 523-528.
31. Firstov S.A., Gorban’ V.F., Pechkovskii E.P. Measurement of ultimate values of hardness, elastic strain and stress of materials by an automatic indentation method. Materialovedenie. 2008. No. 8. P. 15-21(In Russ.).
Review
For citations:
Tkachuk G.A., Maltsev V.A., Chikova O.A. Research of microstructure and mechanical properties in LS59-1A brass submicrovolumes. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):40-47. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-40-47