High-temperature ion nitriding of T15K6 indexable carbide inserts
https://doi.org/10.17073/0021-3438-2019-4-30-39
Abstract
High-temperature (t = 800 °С) ion nitriding of T15K6 indexable carbide inserts was carried out with regard to the structure formation, phase composition, surface coating thickness ensuring an increase in their durability during the cutting test. It was found that hardness and microhardness values increase to 15 % after ion nitriding, however, with a temperature increase of more than 600 °C they gradually decrease to their initial values. Flexural strength after ion nitriding increases by 27 %. The fractography of fractures in the T15K6 carbide surface layers after ion nitriding for 1 and 2 hours at different temperatures showed a very branched fracture structure on edges with a fragile pattern inside the material. The analysis of T15K6 carbide surface layer microstructures after ion nitriding showed that as the ion nitriding temperature increases, the size of conglomerate carbides in the surface layer decreases. The depth of the T15K6 nitrided layer is 1 to 7 pm. Certain regularities of the effect of various ion nitriding time and temperature conditions on the performance characteristics of products made of TK group titanium-tungsten alloys are determined. At 600, 700, 800 °C ion nitriding temperatures and 1 to 8 hours isothermal exposure time, the increase in hardness, microhardness and tensile strength with lower wear was found when cutting T15K6 indexable carbide inserts. It is determined that as the ion nitriding time increases, intergranular destruction areas expand, while the intragranular areas shrink. In case of ion nitriding, a solid solution (TixWx)(C1_yNy) and (Co1_xWx)(C1_yNy) supersaturated with tungsten is formed and three and four component compounds are released in the surface layer.
About the Authors
S. I. BogodukhovRussian Federation
Dr. Sci. (Tech.), Prof., Department of materials science and technology materials, OSU.
460018, Orenburg, Pobeda ave., 13
E. S. Kozik
Russian Federation
Cand. Sci. (Tech.), Associate professor, Department of materials science and technology materials, OSU.
460018, Orenburg, Pobeda ave., 13
E. V. Svidenko
Russian Federation
Cand. Sci. (Tech.), Lecturer, Department of materials science and technology materials, OSU.
460018, Orenburg, Pobeda ave., 13
References
1. Zhang Li., Wang Yuan-Jie., Yu Xian-Wang., Chen Shu., Xiong Xiang-Jin. Crack propagation characteristic and toughness of functionally graded WC—CO cemented carbide. Int. J. Refract. Met. Hard Mater. 2008. Vol. 26. No. 4. P. 295—300.
2. Chichkovskii I.V Calculation of heat fields during processing of KPI materials in the MATHCAD environment. Samara: SGY, 2003. P. 28-35 (In Russ.).
3. Colovcan V.T. Some analytical consequences of experiment data on properties of WC-Co hard metals. Int J. Refract. Met. Hard Mater. 2008. Vol.26. No. 4. P. 301-305.
4. Guo Zhixing, Xiong Ji, YangMei, Jiang Cijin. WC-TiC-Ni cemented carbide with enhanced properties. J. Alloys and Compnd. 2008. Vol. 465. No. 1-2. P. 157-162.
5. Kiparisov S.S., Levinskii Yu.V. Nitriding of refractory metals. Moscow: Metallurgiya, 1972 (In Russ.).
6. Panov V.S., Chyvilin A.M. Technology and properties of sintered hard alloys and their products. Мoscow: MISIS, 2001 (In Russ.).
7. Lakhotkin Yu.V. Chemical deposition of nano structured tungsten and tungsten-alloy coatings from gas phase. Prot. Met. Phys. Chem. 2008. Vol. 44. P. 319-332.
8. Berov Z.Zh., Karamurzov B.S., Tlibekov A.Kh., Yakhut-lov M.M. Selection of a coating material for diamond grits and optimization of its thickness. J. Superhard Mater. 1998. Vol. 5. P. 55-61.
9. Endler I., Leonhardt A., Scheibe H.-J., Born R. Interlayers for diamond deposition on tool materials. Diamond Relat. Mater. 1996. Vol. 5. P. 299-303.
10. De Oliveira L.J., CabralS.C., Filgueira M. Study hot pressed Fe-diamond composites graphitization. Int. J. Refract. Met. Hard Mater. 2012. Vol. 35. Р. 228-234.
11. Hell J., Chirtoc M., Eisenmenger-Sittner C., Hutter H., Kor-nfeind N., Kijamnajsuk P., KitzmantelM., Neubauer E., Zell-hofer K. Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system. Surf. Coat. Technol. 2012. Vol. 208. P. 24-31.
12. Qiu W.Q., Liu Z.W, He L.X., ZengDC., Mai Y.-W. Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)-diamond composite interlayer. Mater. Lett. 2012. Vol. 81. P. 155-157.
13. Ma Zh., Wang J., Wu Q., Wang Ch. Preparation of flat adherent diamond films on thin copper substrates using a nickel interlayer. Surf. Coat. Technol. 2002. Vol. 155. P. 96-101.
14. Huang Y., Xiao H., Ma Zh, Wang J., Pengzhao Gao. Effects of Cu and Cu/Ti interlayer on adhesion of diamond film. Surf. Coat. Technol. 2007. Vol. 202. P. 180-184.
15. Zhang Z., Chen D.L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A. 2008. Vol. 483. P. 148-152.
16. Zaitsev A.A., Kurbatkina V.V., Levashov E.A. Features of the effect of nanodispersed additives on the sintering process and properties of powdered cobalt alloys. Russ. J. Non-Ferr. Met. 2008. Vol. 49. No. 2. P. 120-126.
17. Zaitsev A.A., Kurbatkina V.V., Levashov E.A. Features of the influence of nanodispersed additions on the process of and properties of the Fe-Co-Cu-Sn sintered alloy. Russ. J. Non-Ferr. Met. 2008. Vol. 49. No. 5. P. 414-419.
18. Levashov E.A., Kurbatkina V.V., Zaytsev A.A. Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles. Materials. 2010. No. 3. P. 97-109.
19. Zaitsev A.A., Sidorenko D.A., Levashov E.A, Kurbatkina V.V., Andreev V.A., Rupasov S.I., Sevast’yanov P.V. Diamond tolls in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete. J. Superhard Mater. 2010. Vol. 34. No. 6. P. 423-431.
20. Zaitsev A.A., Sidorenko D.A., Levashov E.A, Kurbatkina V.V., Rupasov S.I., Andreev V.A., Sevast’yanov P.V. Designing and application of a dispersion-reinforced binder based on Cu-Ni-Fe-Sn alloy for cutting tools made of ultrahard materials. J. Superhard Mater. 2012. Vol. 34. No. 4. P. 270-280.
21. Tokova L.V, Zaitsev A.A., Kurbatkina V.V., Levashov E.A., Sidorenko D.A., Andreev V.A. Features of the influence of ZrO2 and WC nanodispersed additives on the properties of metal matrix composite. Russ. J. Non-Ferr. Met. 2014. Vol. 55. No. 2. Р. 186-190.
22. Bohodukhiv S.I. Materials Science. Мoscow: Machino-stroenie, 2015 (In Russ.).
23. Bondarenko V.A. Quality assurance and improvement of characteristics of cutting tools. Мoscow: Masinostroe-nie, 2000 (In Russ).
24. Libenson G.A. Powder metallurgy processes. Мoscow: MISIS, 2001. Vol. 1 (In Russ.).
25. Redchenko D.S., Popov A.Yu. Method for processing superhard materials: Pat. 2440229 (RF). 2012 (In Russ.).
26. Sokolov A.G. Method for machining carbide tools: Pat. 2509173 (RF). 2014 (In Russ.).
27. Chexovoi A.N., Belkov O.V., Prokopova T.I. Method of chemical-thermal treatment of products from hard alloy and steel: Pat. 2231573 (RF). 2004 (In Russ.).
28. Oskolkova T.N., Budovskikh Е.А. The method of surface hardening of tungsten-cobalt carbide tools: Pat. 2398046 (RF). 2010 (In Russ.).
29. HindrikE. Plate with a coating for cutting tools for turning steels: Pat. 2536014 (RF).2014 (In Russ.).
30. Kabanov A.V, Fedotov S.V, Vislagysov A.A., Pavlov M.D. Method of hardening of products from hard alloys: Pat. 2501865 (RF). 2013 (In Russ.).
31. Savostikov V.M, Sergeyev S.M., Pingzhin Yu.P. The method of combined ion-plasma treatment of products from steels and hard alloys: Pat. 2370570 (RF). 2009 (In Russ.)
Review
For citations:
Bogodukhov S.I., Kozik E.S., Svidenko E.V. High-temperature ion nitriding of T15K6 indexable carbide inserts. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):30-39. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-30-39