Study of the process of titanium-containing furnace charging material compaction by an experimental-analytical method
https://doi.org/10.17073/0021-3438-2019-4-16-22
Abstract
The study covers the dependence of spongy titanium-based powder material porosity on the stress state coefficient during plastic deformation with the prevailing effect of all-round compression. Based on the results obtained in previous papers, an assemblage of yield curves with varying porosity is constructed on the σ —T plane. The yielding condition of the powder material is based on the Modified Drucker—Prager Cap model. The graph of geometrical interpretation of the accepted yielding condition contains straight lines corresponding to different values of the stress state coefficient k = σ/T where о is the average hydrostatic stress, and T is the shear stress intensity. In order to formulate the relationship of porosity (θ, %), average normal stress (σ) expressed in the nondimensional form, and the stress state coefficient (k), intersection points of the yield curve assemblage corresponding to yield surface generatrices on the o—T plane and radial straight lines were used. As a result, an equation of the θ = θ(σ, k) form was obtained. The experimental part of the study was performed in order to test the adequacy of this ratio. Powder blanks pre-compacted at a pressure of 1000 MPa and a temperature of 325 °C were subjected to electrical discharge sawing along the axial section to obtain flat samples (templates). Several characteristic areas were selected on the surface of templates to determine local surface porosity using quantitative metallography. The stress-strain state in representative areas was additionally determined by numerical simulation. The calculated values of the volumetric plastic strain, shear stress intensity and average normal stress were determined in axial section zones corresponding to the studied areas. It is shown that the stress state coefficient varying within a sufficiently wide range (k = —10...—0.86) does not affect significantly the porosity value.
Keywords
About the Authors
A. G. ZalazinskiiRussian Federation
Dr. Sci. (Tech.), Leading researcher, Laboratory of system simulation, IES UB RAS.
620049, Ekaterinburg, Komsomolskaya str., 34
A. V. Nesterenko
Russian Federation
Cand. Sci. (Tech.), Senior researcher, Laboratory of material micromechanics, IES UB RAS.
620049, Ekaterinburg, Komsomolskaya str., 34
I. M. Berezin
Russian Federation
Berezin I.M. — Cand. Sci. (Tech.), Researcher, Laboratory of system simulation, IES UB RAS; Senior researcher, UFU named after the first President of Russia B.N. Yeltsin.
620049, Ekaterinburg, Komsomolskaya str., 34
References
1. Nesterenko A.V, Novozhonov V.I., Zalazinskii A.G., Skripov A.V. Influence of temperature on compactibility of briquettes of titanium sponge alloyed with hydrogen. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 287-292.
2. Helle A.S., Easterling K.E., Ashby M.F. Hot-isostatic pressing diagrams: New developments. Acta Metal. 1985. Vol. 33. No. 12. P. 2163-2174.
3. Swinklers F.B., Wilkinson D.S., Arzt E., Ashby M.F. Mechanisms of hot isostatic pressing. Acta Metal. 1983. Vol. 31. No. 11. P. 1829-1840.
4. Nissel C. HIP diffusion bonding. Powder Metal. Inter. 1984. Vol. 16. No. 3. P. 113-116.
5. Hartong B., Jerier J.F., Doremus P., Imbault D., Don-ze F.V. Modeling of high-density compaction of granular materials by the discrete element method. Int. J. Sol. Struct. 2009. Vol. 46. No. 18-19. P. 3357-3364.
6. Maksimenko A.L. Simulation of strain hardening of porous and powder materials in the extrusion processes. Poroshk. metallurgiya. 2014. No. 11/12. P. 3-14 (In Russ.).
7. Martynova I.F., Shtern M.B. Porous solids plasticity equations considering true strain of the base material. Poroshk. metallurgiya. 1978. No. 1. P. 23-29 (In Russ.).
8. Xin X.J., Jayaraman P., Daehn G.S., Wagoner R.H. Investigation of yield surface of monolithic and composite powders by explicit finite element simulation. Int. J. Mech. Sci. 2003. Vol. 45. No. 4. P. 707-723.
9. Loginov Yu.N., Stepanov S.I., Khanykova E.V. Effect of pore architecture of titanium implants on stress-strain state upon compression. Solid State Phenomena. 2017. Vol. 265. P. 606-610.
10. Maksimenko A.L., Mikhailov O.V, Shtern M.B. Effect of the morphology of pores on the regularities of plastic-deformation of porous bodies. 2. Evolution of the shape of pores in the process of plastic deformation. Soviet Powder Metallurgy and Metal Ceramics. 1992. Vol. 31. No. 5. P. 381-385.
11. Orlova E.V, Panova I.M. Analysis of the discrete materials densification process under hydrostatic pressure. Kuzn.-shtamp. pr-vo. Obrabotka materialov davleniem. 2016. No. 6. P. 10-15 (In Russ.).
12. Zalazinskii A.G., Polyakov A.P. Model of plastically compressed material and its application to the study of the process of a porous billet extrusion. Prikl. mekhanika i tekhn.fiz.ika. 2002. No. 3. P. 140-151 (In Russ.).
13. Kushch V.I., Podoba Ya. O., Shtern M.B. Effect of microstructure on yield strength of porous solid: A comparative study of two simple cell models. Comput. Mater. Sci. 2008. Vol. 42. No. 1. P. 113-121.
14. Grigor’ev A.K., Rudskoi A.I., Kolesnikov A.V Mathematical model of the elastoplastic deformation process of porous sintered materials. Poroshk. metallurgiya. 1992. No. 12. P. 1-10 (In Russ.).
15. Perel’man V.E. Analysis of powder materials compaction under hydrostatic loading. Poroshk. metallurgiya. 1977. No. 9. P. 15-21 (In Russ.).
16. Ogbonna N., Fleck N.A. Compaction of an array of spherical particles. Acta Metal. Mater. 1995. Vol. 43. No. 2. P. 603-620.
17. Loginov Yu.N., Babailov N.A., Pervuhina D.N. Simulation of porous material compaction process using Abaqus software. Kuzn.-shtamp. pr-vo. Obrabotka materialov davleniem. 2015. No. 6., P. 45—48 (In Russ.).
18. Zhou M., Huang S, Hu J, Lei Y., Zou F, Yan S, Yang M. Experiment and finite element analysis of compaction densification mechanism of Ag—Cu—Sn—In mixed metal powder. Powder Technology. 2017. Vol. 313. P. 68—81.
19. Druyanov B.A. Applicable theory of porous solids plasticity. Moscow: Mashinostroenie, 1989 (In Russ.).
20. Laptev A.M. Criteria for porous materials plasticity. Poroshk. metallurgiya. 1982. No. 7. P. 12—17 (In Russ.).
21. DorMohammedi H., Khoei A.R. A three-invariant cap model with isotropic-kinematic hardening rule and associated plasticity for granular materials. Int. J. Sol. Struct. 2008. Vol. 45. No. 2. P. 631—656.
22. DiMaggio F.L., Sandler I.S. Material model for granular soils. J. Eng. Mechan. Division. 1971. Vol. 97. No. 3. P. 935—950.
23. Gurson A.L. Continuum theory of ductile rupture by void nucleation and growth: Part 1. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. Trans. ASME. 1977. Vol. 99. No. 1. P. 2—15.
24. Shima S., Oyane M. Plasticity theory for porous metals. Int. J. Mech. Sci. 1976. Vol. 18. No. 6. P. 285—291.
25. Doraivelu S.M., Gegel H.L., Gunasekera J.S., Malas J.C., Morgan J.T., Thomas J.F. A new yield function for compressible P/M materials. Int. J. Mech. Sci. 1984. Vol.26. No. 9-10. P. 527—535.
26. Lee D.N., Kim H.S. Plastic yield behavior of porous metals. Powder Metal. 1999. Vol. 41. No. 2. P. 121—141.
27. Park S.J., Han H.N., Oh K.H., Lee D.N. Model for compaction of metal powders. Int. J. Mech. Sci. 1976. Vol. 18. No. 6. P. 285—291.
28. Biswas K. Comparison of various plasticity models for metal powder compaction processes. J. Mater. Proc. Technol. 2005. Vol. 166. No. 1. P. 107—115.
29. Drucker D.C., Prager W Soil mechanics and plastic analysis for limit design. Quart. Appl. Math. 1952. Vol. 10. No. 2. P. 157—165.
30. Resende L., Martin J.B. Formulation of Drucker—Prager Cap Model. J. Eng. Mech. ASCE. 1985. Vol. 111. No. 7. P. 855—881.
31. Dassult Systemes Simulia Corp., Abaqus Theory Manual 6.13, 2013.
32. Kolmogorov V.L., Loginov Yu.N., ParshakovS.I., ShilovS.V On the hypothesis of a single curve for powder materials. In: Obrabotka metallov davleniem. Sverdlovsk: UPI named after the S.M. Kirov, 1981. P. 47—50 (In Russ.).
33. Berezin I., Nesterenko A., Zalazinskii A., Kovacs G. Influence of stress state conditions on densification behavior of titanium sponge. Acta Polytech. Hungar. 2017. Vol. 14. No. 6. P. 153—168.
34. Berezin I.M., Nesterenko A.V, Zalazinskii A.G. Identification of the modified Drucker—Prager yield condition and modelling of compaction of the plasticized titanium feedstock. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 3. P. 297—302.
Review
For citations:
Zalazinskii A.G., Nesterenko A.V., Berezin I.M. Study of the process of titanium-containing furnace charging material compaction by an experimental-analytical method. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):16-22. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-16-22