Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Production of silumins using silicon production waste

https://doi.org/10.17073/0021-3438-2019-4-4-15

Abstract

The paper presents a review of existing methods to produce silumins. The possibility of obtaining foundry alloys using amorphous microsilica is shown. Different methods of adding SiO2 particles into molten aluminum are studied: in the form of aluminum powder — SiO2 master alloy tablets, particle mixing in the melt at the liquidus temperature and introducing SiO2 together with a stream of argon. The paper provides calculations of Gibbs energy formation and change enthalpy for silicon reduction by aluminum from its oxide. Calculations demonstrated the thermodynamic possibility of silumin production using amorphous microsilica. The effect of alloying additives and impurities on the silicon reduction behavior is determined. It is found that magnesium can be used as a surface-active additive to remove oxygen from dispersed particle surfaces and reduce silicon from its oxide. It is determined that the method of aluminum-silicon alloy production by introducing amorphous microsilica preheated to 300 °С into the aluminum melt (t = = 900 °С) together with argon stream (with subsequent intensive mixing) features higher efficiency since it ensures producing aluminum-silicon alloys containing more than 6 wt.% of silicon and microstructure of pre-eutectic foundry silumins. Industrial application of the proposed method will improve the efficiency of the existing silumin production process due to savings on purchasing commercial crystalline silicon. Moreover, this technology will minimize the environmental impact by reducing the volume and subsequent eliminating sludge fields used as landfills for storing dust from silicon gas treatment systems containing up to 95 wt.% of amorphous microsilica.

About the Authors

M. P. Kuz’min
Irkutsk National Research Technical University
Russian Federation

Cand. Sci. (Tech.), Associate professor of Department of metallurgy of non-ferrous metals; Deputy head of Department of metallurgy of light metals; Research fellow of Innovation and technology center, INRTU.

664074, Irkutsk, Lermontova str., 83



L. M. Larionov
Irkutsk National Research Technical University
Russian Federation

Research fellow of Innovation and technology center, INRTU.

664074, Irkutsk, Lermontova str., 83



V. V. Kondratiev
Irkutsk National Research Technical University
Russian Federation

Cand. Sci. (Tech.), Head of Innovation and technology center, INRTU.

664074, Irkutsk, Lermontova str., 83



M. Yu. Kuz’mina
Irkutsk National Research Technical University
Russian Federation

Cand. Sci. (Chem.), Associate professor of Department of metallurgy of non-ferrous metals, INRTU.

664074, Irkutsk, Lermontova str., 83



V. G. Grigoriev
SibVASMI, JSC
Russian Federation

Cand. Sci. (Tech.), Gen. director of JSC «SibVASMI».

664007, Irkutsk, Sovetskaya str., 55



А. V. Knizhnik
SibVASMI, JSC
Russian Federation

Cand. Sci. (Tech.), Head of technical department of JSC «SibVASMI».

664007, Irkutsk, Sovetskaya str., 55



A. S. Kuz’mina
Irkutsk National Research Technical University
Russian Federation

Cand. Sci. (Phys.-Math.), Research fellow of Nanostructure synthesis department, INRTU.

664074, Irkutsk, Lermontova str., 83



References

1. Steent A.H., Hellawell A. Structure and properties of aluminium-silicon eutectic alloys. Acta Metall. 1972. Vol. 20. P. 363—370.

2. Pietrowski S. Characteristic features of silumin alloys crystallization. Mater. Design. 1997. Vol. 18 (4-6). P. 373— 383.

3. Bo Jiang, Zesheng Ji, Maoliang Hu, Hongyu Xu, Song Xu. A novel modifier on eutectic Si and mechanical properties of Al—Si alloy. Mater. Lett. 2019. Vol. 239. P. 13—16.

4. Zhikai Zheng, Yong-jian Ji, Wei-min Mao, Rui Yue, Zhi-yong Liu. Influence of rheo-diecasting processing parameters on microstructure and mechanical properties of hypereutectic Al—30 % Si alloy. Trans. Nonferr. Met. Soc. China. 2017. Vol. 27. P. 1264—1272.

5. Belov N.A. Phase composition of aluminum alloys. Moscow: MISIS, 2009 (In Russ.).

6. Belyaev A.I., Bochvar O.S., Bunov N.N. Aluminum alloys. Metallurgical science of aluminum and its alloys. Moscow: Metallurgiya, 1983 (In Russ.).

7. Altman M.В., Lebedev AA., Chukhrov M.V. Melting and casting of aluminum alloys. Moscow: Metallurgiya, 1983 (In Russ.).

8. Popov S.I. Silicon metallurgy in three-phase the rudno-termicheskikh furnaces. Irkutsk: CJSC «Silicon», 2004 (In Russ.).

9. . Cao W, Chen S.-L, Zhang F, Wu K, Yang Y., Chang Y.A., Schmid-Fetzer R, Oates W.A. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Caplhad. 2009. Vol. 33 (2). P. 323-342.

10. Bakker H. Enthalpies in alloys. Miedema’s semi-empirical model. Switzerland, Zurich: Trans Tech. Publ. Ltd., 1998.

11. Kuz’min M.P., Begunov A.I. Approximate calculations of thermodynamic characteristics of intermetallic connections on the basis of aluminum. Vestnik IRGTU. 2013. No. 1 (72). P. 98-102 (In Russ.).

12. Kondrat’ev V.V., Karlina A.I., Nemarov A.A., Ivanov N.N. Results of theoretical and practical researches of flotation of nanodimensional siliceous structures. Zhurnal SFU. Tekhnika i tekhnologii. 2016. Vol. 9. No 5. P. 657-670 (In Russ.).

13. Rafalsky I.V. Receiving foundry composite materials from aluminum alloys in a heterophase state with disperse fillers. Lit’e i metallurgiya. 2011. No. 3. P. 26-31 (In Russ.).

14. Arabey A.V., Rafalsky I.V, Nemenenok B.M. Synthesis of alloys of the Al-Si system from the alyumomatrichnykh of the compositions received with use of waste of aluminum and quartz sand. Metall i lit’e Ukrainy. 2013. No. 4 (239). P. 3-7 (In Russ.).

15. Gavrilin I. V, Kechin V.A., Koltyshev VI. Receiving foundry alpaxes with use of dust-like silicon and metalwaste. Vladimir: VGU, 2003 (In Russ.).

16. Gavrilin I.V, Kechin V.A., Koltyshev VI. Use of siliceous materials for receiving alloys aluminum-silicon. Teorija i tehnologija litejnyh splavov. 1999. No. 1. P. 10-12 (In Russ.).

17. Kuz’min M.P., Kondrat’ev V.V., Larionov L.M., Kuz’mina M.Y., Ivanchik N.N. Possibility of preparing alloys of the Al-Si system using amorphous microsilica. Metallurgist. 2017. Vol. 61. P. 86-91.

18. Sree Manu K.M., Sreeraj K, Rajan T.P.D., Shereema R.M., Pai B.C., Arun B. Structure and properties of modified compocast microsilica reinforced aluminum matrix composite. Mater. Design. 2015. Vol. 88. P. 294-301.

19. Pai B.C., Geetha Ramani, Pillai R.M., Satyanarayana K.G. Role of magnesium in cast aluminium alloy matrix composites. J. Mater. Sci. 1995. Vol. 30. P. 1903-1911.

20. Gowri Shankar, Jayashree M.C., Kini P.K., Achutha U, Sharma S.S. Effect of silicon oxide (SiO2) reinforced particles on ageing behavior of Al-2024 alloy. Int. J. Mech. Eng. Technol. 2014. Vol. 5 (9). P. 15-21

21. Robie A.R., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298,15 K and 1 bar (105 pascals) pressure and at higher temperatures Washington: US Government Printing Office, 1995.

22. Ailer R. Silicon dioxide chemistry. Moscow: Mir, 1982 (In Russ.).

23. Ryabin V.A. Thermodynamic properties of substances: Reference book. Leningrad: Khimiya, 1977 (In Russ.).

24. Rafalsky I. V, Arabey A. V. The thermodynamic analysis of reactions of interaction of phases of components of the foundry alloys received from alyumo-matrix compositions on the basis of Al-SiO2 system. Fundamental’nye problemy sovremennogo materiallovedenija. 2012. Vol. 9. No. 3. P. 375-378 (In Russ.).

25. Bobkova N.M. Physical chemistry of refractory nonmetallic and silicate materials. Minsk: Vyshaya shkola, 2007 (In Russ.).

26. Kondratiev V.V., GovorkovA.S., KolosovA.D., Gorovoy V.O., Karlina A.I. The development of a test stand for developing technological operation flotation and separation of MD2. The deposition of nanostructures MD1 produce nanostructures with desired properties. Int. J. Appl. Eng. Res. 2017. Vol. 12. No. 22. P. 12373-12377.

27. Zenkov E.V, Tsvik L.B. Increasing the reliability the combined criteria of the static strength of a material of complexly loaded deformable structures. Mater. Phys. Mech. 2018. No. 40. P. 124-132.

28. Kondratiev V.V., Nebogin S.A., Gorovoy VO, Sysoev I.A., Karlina A.I. Description of the test stand for developing of technological operation of nano-dispersed dust preliminary coagulation. Int. J. Appl. Eng. Res. 2017. Vol. 12. No. 22. P. 12809-12813.

29. Zenkov E.V., Tsvik L.B. Stress-strain state of prismatic samples with hollow chamfers. Russ. Eng. Res. 2013. Vol. 33. No. 10. P. 562-565.

30. Kondrat’ev V.V., Ershov V.A., Shakhrai S.G., Ivanov N.A., Karlina A.I. Formation and utilization of nanostructures based on carbon during primary aluminum production. Metallurgist. 2016. Vol. 60. No. 7-8. P. 877-882.

31. Rafal’skij I.V, Nemenenok B.M. Physical and chemical interaction of components of Al/SiO2 system in metallurgical processes ofsynthesis ofthe foundry disperse strengthened aluminum alloys. Lit’e i metallurgija. 2017. No. 2 (87). P. 31-39 (In Russ.).


Review

For citations:


Kuz’min M.P., Larionov L.M., Kondratiev V.V., Kuz’mina M.Yu., Grigoriev V.G., Knizhnik А.V., Kuz’mina A.S. Production of silumins using silicon production waste. Izvestiya. Non-Ferrous Metallurgy. 2019;(4):4-15. (In Russ.) https://doi.org/10.17073/0021-3438-2019-4-4-15

Views: 1139


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)