Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Development of high-magnesium alloy composition to create a temporary seals used in oil industry

https://doi.org/10.17073/0021-3438-2019-3-68-76

Abstract

Alloy composition was developed and heat treatment conditions were selected to obtain an intensively dissolving magnesium alloy to be used as a ball plug under oil-well precommissioning conditions, i.e. to seal various well sections with further near-complete destruction of these plugs for a short time (up to 11 h). It was found that the reason of high dissolution rate of Mg alloy with a composition similar to high-strength ML6 is a higher nickel content (up to 0,19 %). The compounds of this element are located along the grain boundaries, and it leads to intense intercrystalline corrosion of the alloy in a medium containing chlorine ions. It is shown that an effective method for controlling the Mg alloy dissolution rate is to synthesize coatings on its surface with various thicknesses by plasma electrolytic treatment (PET) in aqueous solution containing 110 g/l of commercial water glass. This method allowed synthesizing coatings with a thickness from 10 to 41 μm on the experimental magnesium alloy with increased nickel concentrations (~ 0,19 %) in a short period of time (from 10 to 20 min) with low set AC current density (4 A/dm2) – galvanostatic mode of PET processes. Corrosion investigations were carried out in 3 % KCl aqueous solution at 93 ± 2 °C. PET coatings were obtained on the magnesium alloy using a capacitive unit. Corrosion tests conditions for materials used as ball plugs in oil well seals were similar to that cited in foreign researches.

About the Authors

A. G. Rakoch
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Dr. Sci. (Chem.), prof. of the Department «Metallurgy of steel, new production technologies and protection of metals».

119049, Russia, Moscow, Leninskii pr., 4.



N. A. Predein
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Postgraduate student of the Department «Metallurgy of steel, new production technologies and protection of metals».

119049, Russia, Moscow, Leninskii pr., 4.



A. A. Gladkova
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Chem.), associate prof. of the Department «Metallurgy of steel, new production technologies and protection of metals.

119049, Russia, Moscow, Leninskii pr., 4.



A. V. Koltygin
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of foundry technologies and materials art working.

119049, Russia, Moscow, Leninskii pr., 4.



V. V. Vorozhtsova
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Postgraduate student of the Department «Metallurgy of steel, new production technologies and protection of metals».

119049, Russia, Moscow, Leninskii pr., 4.



References

1. Aviles I., Dardis M., Jacob G. Degradable alternative to risky mill-out operations in plug and perf. In: SPE/ICoTA Coiled Tubing & Well Intervention Conference & Exhibition (Woodlands, Texas, USA, 2015). P. 1—10. https://doi.org/10.2118/173695-MS.

2. Fripp M., Walton Z. Degradable metal for use in a fully dissolvable frac plug. In: Offshore technology conference (Houston, Texas, USA, 2016). P. 1—9. https://doi.org/10.4043/27187-MS.

3. Chali E. Corrosion resistance of aluminium and magnesium alloys: understanding, performance and testing. New Jersey: John Wiley and Sons, 2010. DOI:10.1002/9780470531778.

4. Энциклопедия современной техники. Строительство. URL: http://www.bibliotekar.ru/spravochnik-181-2/145.htm. Encyclopedia of modern technology. Building. URL: http://www.biblioteka.ru/spravochnik-181-2/145/htm (In Russ.).

5. Колачев Б.А., Елагин В.И., Ливанов В.А. Материаловедение и термическая обработка цветных металлов и сплавов. М.: МИСиС, 2001. Kolachev B.A., Elagin V.I., Livanov V.A. Materials science and thermal processing non-ferrous metals and alloys. Moscow: MISIS, 2001 (In Russ.).

6. Курдюмов А.В., Пикунов М.В., Чурсин В.М., Бибиков Е.Л. Производство отливок из сплавов цветных метал лов: Учеб. для вузов. М.: МИСиС, 1996. Kurdyumov A.V., Pikunov M.V., Chursin V.M., Bibikov E.L. Manufacture of castings from non-ferrous alloys. Moscow: MISIS, 1996 (In Russ.).

7. Ракоч А.Г., Дуб А.В., Гладкова А.А. Анодирование легких сплавов при различных электрических режимах. Плазменно-электролитическая нанотехнология. М.: Старая Басманная, 2012. Rakoch A.G., Dub A.V., Gladkova A.A. Anodizing of light alloys under different electrical modes. Plasmaelectrolytic nanotechnology. Moscow: Staraya Basmannaya, 2012 (In Russ.).

8. Снежко Л.А., Руднев В.С. Анодно-искровое оксидирование магния. М.: Техника. ТУМА ГРУПП, 2014. Snezhko L.A., Rudnev V.S. Spark anodizing oxidation of magnesium. Moscow: Tekhnika. TUMA GRUPP, 2014 (In Russ.).

9. El Mahallawy N.A., Shoeib M.A., Abouelenain M.H. AZ91 Magnesium alloys: anodizing of using environmental friendly electrolytes. J. Surf. Eng. Mater. Adv. Technol. 2011. No. 1. P. 62—72. DOI:10.4236/jsemat.2011.12010.

10. Yang Y., Wu H. Effect of current density on corrosion resistance of micro-arc oxide coatings on magnesium alloy. Trans. Nonferr. Met. Soc. China. 2010. Vol. 20. P. 688—692. http://doi.org/10.1016/S1003-6326(10)60563-8.

11. Arrabal R., Mota J.M., Criado A., Pardo A., Mohedano M., Matykina E. Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy. Surf. Coat. Technol. 2012. Vol. 206. P. 4692—4703. http://doi.org/10.1016/j.surfcoat.2012.05.091.

12. Guo H., An M. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation. Thin Solid Films. 2006. Vol. 500. P. 186—189. http://doi.org/10.1016/j.tsf.2005.11.045.

13. Tang Y., Zhao X., Jiang K. Chen J., Zuo Y. The Influence of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment. Surf. Coat. Technol. 2010. Vol. 205. P. 1789—1792. http://doi.org/10.1016/j.surfcoat.2010.05.016.

14. Cai Q., Wang L., Wei B. Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes. Surf. Coat. Technol. 2006. Vol. 200. P. 3727—3733. http://doi.org/10.1016/j.surfcoat.2005.05.039.

15. Wang Y.M., Wang F.H., Xu M.J., Zhao B., Guo L.X., Ouyang J.H. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application. Appl. Surf. Sci. 2009. Vol. 255. P. 9124—9131. http://doi.org/10.1016/j.apsusc.2009.06.116.

16. Ma Y., Nie X., Northwood D., Hu H. Systematic study of the electrolytic plasma oxidation process on Mg alloy for corrosion protection. Thin Solid Films. 2006. Vol. 494. P. 296—301. http://doi.org/10.1016/j.tsf.2005.08.156.

17. Zhang P., Nie X., Hua H., Liu Y. TEM analysis and tribological properties of plasma electrolytic oxidation (PEO) coatings on magnesium engine AJ62 alloy. Surf. Coat. Technol. 2010. Vol. 205. P. 1508—1514. http://doi.org/10.1016/j.surfcoat.2010.10.015.

18. Yerokhin A.L., Shatrov A., Samsonov V., Shashkov P., Leyland A., Matthews A. Fatigue properties of Keronite coatings on a magnesium alloy. Surf. Coat. Technol. 2004. Vol. 182. P. 78—84. http://doi.org/10.1016/S0257-8972(03)00877-6.

19. Barbosa D.P., Knornschild G., Strunk H.P. Electron microscopic studies of anodic oxide films on the AZ91HP alloy. Mater. Res. 2003. Vol. 6. P. 103—106. http://dx.doi.org/10.1590/S1516-14392003000100018.

20. Rakoch A.G., Gladkova A.A., Zayar Linn, Strekalina D.M. The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte. Surf. Coat. Technol. 2015. Vol. 269. P. 138—144. http://doi.org/10.1016/j.surfcoat.2015.02.026.

21. Хохлов В.В., Ракоч А.Г., Хла Мо, Жаpинов П.М., Баутин В.А., Баpдин И.В. Влияние силиката натрия на механизм роста оксидно-керамических покрытий при микродуговом оксидировании алюминиевых сплавов. Коррозия: материалы, защита. 2007. No. 1. С. 28—33. Hohlov V.V., Rakoch A.G., Hla Mo, Zharinov P.M., Bautin V.A., Bardin I.V. Impact of sodium silicate to the ceramic oxide coating growth mechanism at micro-arc oxidation of aluminum alloys. Korroziya: materialy, zashchita. 2007. No. 1. P. 28—33 (In Russ.).

22. Ракоч А.Г., Гладкова А.А., Дуб А.В. Плазменно- электролитическая обработка алюминиевых и ти- тановых сплавов. М.: Изд. дом МИСиС, 2017. Rakoch A.G., Gladkova A.A., Dub A.V. Plasma-electrolytic treatment of aluminum and titanium alloys. Moscow: MISIS, 2017 (In Russ.).

23. Томашов Н.Д., Чернова Г.П. Теория коррозии и кор- розионно-стойкие сплавы: Учеб. пос. для вузов. М.: Металлургия, 1993. Tomashov N.D., Chernova G.P. Theory of corrosion and corrosion-resistant alloys: A manual for universities. Moscow: Metallurgiya, 1993 (In Russ.).

24. Uhlig Herbert H., Revie R. Winston. Corrosion and corrosion control: An introduction to corrosion science and engineering. 4th ed. John Wiley and Sons, Inc., Publ., 2008.

25. Barchiche C.-E., Rocca E., Juers C., Hazan J., Steinmetz J. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochim. Acta. 2007. Vol. 53. P. 417—425. http://doi.org/10.1016/j.electacta.2007.04.030.


Review

For citations:


Rakoch A.G., Predein N.A., Gladkova A.A., Koltygin A.V., Vorozhtsova V.V. Development of high-magnesium alloy composition to create a temporary seals used in oil industry. Izvestiya. Non-Ferrous Metallurgy. 2019;(3):68-76. (In Russ.) https://doi.org/10.17073/0021-3438-2019-3-68-76

Views: 841


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)