Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Research of grain size homogeneity effect on sheet stamping ability characteristics of Al2Mg and Al6Mg alloys

https://doi.org/10.17073/0021-3438-2019-3-47-55

Abstract

The quality of products made of sheet aluminum alloys strongly depends on the technological features of the sheet stamping process, as well as on the structure of sheet semi-finished products. The grain size and grain structure uniformity are among the key structural features that influence stampability. A method is proposed and the homogeneity of the grain structure is evaluated. Stampability of Al2Mg and Al6Mg aluminium alloys was evaluated based on measurements of the spring back index, minimum bending radius, stamping ratio, and Martens strain index. Cold work (with a strain degree of 20 %) and subsequent recrystallization annealing at temperatures of 250, 350 and 450 °C for 1 h were used to obtain a grain structure of (26,8 Ѓ} 7,4)÷(126 Ѓ} 43) μm (Al6Mg alloy) and (120 Ѓ} 11)÷(264 Ѓ} 130) μm (Al2Mg alloy) in size. As a result of processing, the effect of the initial grain size was revealed: the coarser structure of the Al2Mg alloy led to a larger grain size after strain and annealing. It was found that an increase in the grain size in both alloys leads to an increase in the Martens index and a decrease in the stamping ratio, which indicates higher stampability of the alloys in the drawing operations of sheet stamping. In the Al2Mg alloy, an increase in the grain size leads to a decrease in the spring back index by 1,5–1,7 times, and an increase in the minimum bending radius. In the Al6Mg alloy, an increase in the grain size leads to an increase in the spring back index by 1,1–1,2 times, and a decrease in the minimum bending radius. The Al6Mg minimum bending radius remains higher compared to Al2Mg regardless of the grain size. Grain size inhomogeneity in the Al6Mg alloy causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. In the Al2Mg alloy, grain size inhomogeneity causes an increase in the Martens index and minimum bending radius, and a decrease in the stamping ratio. For the spring back index, the increase in grain size inhomogeneity causes a high scatter of data. In the Al6Mg alloy, the low annealing temperature led to the preservation of the non-recrystallized structure, which influenced the decrease in stampability.

About the Authors

E. A. Nosova
Samara University.
Russian Federation

Cand. Sci. (Tech.), associate prof. of the Department of metal technology and aviation materials science.

443086, Russia, Samara, Moskovskoe shosse, 34.



A. A. Fadeeva
Samara University.
Russian Federation

Student of Aviation Devices Institute.

443086, Russia, Samara, Moskovskoe shosse, 34.



M. A. Starodubtseva
Samara University.
Russian Federation

Student of Aviation Devices Institute.

443086, Russia, Samara, Moskovskoe shosse, 34.



References

1. Raulea L.V., Goijaerts A.M., Govaert L.E., Baaijens F.P.T. Size effect in the processing of thin metal sheet. J. Mater. Process. Technol. 2001. Vol. 115 (1). P. 44—48.

2. Janssen P.J.M., de Keijser Th.H., Geers M.G.D. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng. A. 2006. Vol. 419. P. 238—248.

3. Gau J., Principe C., Wang J. An experimental study on size effects on flow stress and formability of aluminium and brass for microforming. J. Mater. Process. Technol. 2007. Vol. 184. P. 42—46.

4. Vollertsen F., Biermann D., Hansen H.N., Jawahir I.S., Kuzman K. Size effects in manufacturing of metallic components. CIRP Annu. Manuf. Technol. 2009. Vol. 58 (2). P. 566—587.

5. Зиновьева О.С., Романова В.А. Численное исследование влияния размера зерна и условий нагружения на деформационные характеристики поликристаллического алюминиевого сплава. Соврем. пробл. науки и образования. 2013. No. 6. URL: https://www.science-education.ru/ru/article/view?id=11299 (дата обращения: 21.03.2019).

6. Zinov’eva O.S., Romanova V.A. Numerical research of grain size and load condition effect on deformation characteristics of polycrystalline aluminum alloy. Sovremennye problemy nauki i obrazovaniya. 2013. No. 6. URL: https://www.science-education.ru/ru/article/view?id=11299 (accessed: 21.03.2019) (In Russ).

7. Pereira M.P., Yan W., Rolfec B.F. Sliding distance, contact pressure and wear in sheet metal stamping. Wear. 2010. Vol. 268. P. 1275—1284.

8. Babu S.S.M., Berry S., Ward M., Krzyzanowski M. Numerical investigation of key stamping process parameters influencing tool life and wear. Proc. Manuf. 2018. Vol. 15. P. 427—435.

9. Китаева Д.А., Коджаспиров Г.Е., Рудаев Я.И. О самоорганизации в процессах термомеханического деформирования. Вестн. Тамбовского ун-та. Сер. Естеств. и техн. науки. Физика. 2016. Т. 21. Вып. 3. С. 1051—1054. Kitaeva D.A., Kodzhaspirov G.E., Rudaev Ya.I. On selforganization in process of thermomechanical deformation. Vestnik Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki. Fizika. 2016. Vol. 21. Iss. 3. P. 1051—1054 (In Russ.).

10. Китаева Д.А., Рудаев Я.И. О макрокинетике динамической сверхпластичности алюминиевых сплавов. Матем. моделирование систем и процессов. 2005. No. 13. C. 115—122. Kitaeva D.A., Rudaev Ya.I. On macrokinetics of dynamic superplasticity in aluminium alloys. Matematicheskoe modelirovanie sistem i protsessov. 2005. No. 13. P. 115—122 (In Russ.).

11. Новиков И.И. Теория термической обработки металлов: Учебник. 4-е изд., испр. и доп. М.: Металлургия, 1986. Novikov I.I. Theory of heat treatment. Moscow: Metallurgiya, 1986 (In Russ).

12. Ben Hmida R., Thibaud S., Gilbin A., Richard F. Influence of the initial grain size in single point incremental forming process for thin sheets metal and microparts: Experimental investigations. Mat. Des. 2013. Vol. 45. P. 155—165.

13. Toros S., Ozturk F. Modeling uniaxial, temperature and strain rate dependent behavior of Al—Mg alloys. Comput. Mat. Sci. 2010. Vol. 49. No. 2. P. 333—339.

14. Singh M., Choubey A.K., Sasikumar C. Formability analysis of aluminium alloy by erichsen cupping test method. Mater. Today. Proc. 2017. Vol. 4. Iss. 2. Pt. A. P. 805—810.

15. Кишкина С.И., Фридляндер И.Н. Авиационные материалы. Т. 4. Алюминиевые и бериллиевые сплавы. Ч. I. Деформируемые алюминиевые сплавы и сплавы на основе бериллия. Кн. 1. Под ред. Р.Е. Шалина. Справочник в 9 т. 6-е изд., перераб. и доп. М.: ОНТИ, 1982. Kishkina S.I., Fridlyander I.N. Aviation materials. Vol. 4. Aluminum and beryllium alloys. Part 1. Work aluminium alloys and alloys based on beryllium. Book 1. Ed. R.E. Shalin. Moscow: ONTI, 1982 (In Russ.).

16. Liu Y., Wang L., Zhu B., Zhang Y. Identification of two aluminium alloys and springback behaviours in cold bending. Procedia Manuf. 2018. Vol. 15. P. 701—708.

17. Yuan W., Wan M., Wu X. Prediction of forming limit curves for 2021 aluminum alloy. Proc. Eng. 2017. Vol. 207. P. 544—549.

18. Hua X., Wilkinson D.S., Jain M., Wu P., Mishra R.K. Fuel cap stamping simulation of AA5754 sheets using a microstructure based macro-micro multi-scale approach. Comput. Mater. Sci. 2015. Vol. 98. P. 354—365.

19. Мальцев М.В. Металлография промышленных цветных металлов и сплавов (с атласом макро- и микро- структур). 2-е изд., перераб. и доп. М.: Металлургия, 1970. Mal’tsev M.V. Metallography of commerce non-ferrous metals and alloys. Moscow: Metallurgiya, 1970 (In Russ.).

20. Рогельберг И.Л., Шпичинецкий Е.С. Диаграммы рекристаллизации металлов и сплавов: Справочник. М.: Металлургиздат, 1950. Rogel’berg I.L., Shpichinetskii E.S. Recristalliztion diagram of metals and alloys. Moscow: Metallurgizdat, 1950 (In Russ.).

21. Панченко Е.В., Скаков Ю.А., Кример Б.И. Лаборатория металлографии: Учеб. пос. 2-е изд., испр. и доп. М.: Металлургия, 1965. Panchenko E.V., Skakov U.A., Krimer B.I. Laboratory of metallography. Moscow: Metallurgiya, 1965 (In Russ.).

22. Zhang J.X., Ma M., Liu W.C. Effect of initial grain size on the recrystallization and recrystallization texture of coldrolled AA 5182 aluminum alloy. Mater. Sci. Eng. A. 2017. Vol. 690. P. 233—243.

23. Романовский В.П. Справочник по холодной штамповке. 5-е изд., доп. и перераб. Л.: Машиностроение, 1971. Romanovskii V.P. Handbook on cold stamping. Leningrad: Mashinostroienie, 1971 (In Russ.).

24. Grèze R., Manach P.Y., Laurent H., Thuillier S., Menezes L.F. Influence of the temperature on residual stresses and springback effect in an aluminium alloy International. J. Mech. Sci. 2010. Vol. 52. P. 1094—1100.

25. Cheng T. Ch., Lee R. Sh. The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming. J. Mater. Process. Technol. 2018. Vol. 253. P. 134—159.


Review

For citations:


Nosova E.A., Fadeeva A.A., Starodubtseva M.A. Research of grain size homogeneity effect on sheet stamping ability characteristics of Al2Mg and Al6Mg alloys. Izvestiya. Non-Ferrous Metallurgy. 2019;(3):47-54. (In Russ.) https://doi.org/10.17073/0021-3438-2019-3-47-55

Views: 750


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)