Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Development and industrial tests of composite material based on TiB2 for repair of local destructions in electrolyzer bottom blocks

https://doi.org/10.17073/0021-3438-2019-3-12-19

Abstract

The paper presents the developed composition and technology for obtaining a repair mixture consisting of lumped corundum with a TiB2–C composite coating wettable with aluminum for restoration of local bottom block fractures without electrolyzer stops. The proposed technical solution made it possible to reduce bottom wear and increase aluminum electrolyzer service life by 6 months.A mixture of titanium diboride powder and a refractory powder-like binder in a ratio of 50 : 50 (wt.%) was used to obtain the repair mixture with an optimal composition. Then the lumped corundum was coated with the obtained mixture, dried at 150 °C and after that heat-treated under a carbon-bed at t= 700÷900 °C. As a result of reducing firing the TiB2–C composite material with a carbon content of 15–20 wt.% was formed on the surface of lumped corundum. A qualitative evaluation of the properties of the developed composite coating shows that the coating has a sufficiently high hardness, wear resistance and adhesion to the substrate after the heat treatment. For pilot testing, the repair mixture was covered with molten aluminum to obtain an Al–TiB2–C repair mass in the form of plates. The pilot testing of the repair mass on the 400 kA operating electrolyzer in the RUSAL-Sayanogorsk pilot shop showed that the bottom wear have slowed down 3 months after the local fractures were restored without electrolysis bath stops. This fact is evidenced by a 13 % decrease in the average depth of fractures with a stable current value of 4,7–4,8 kA/bloom after repair. Thus, the locallyused repair mass slowed that the overall wear of the cathode surface and allowed to extend the electrolyzer life.

About the Authors

G. E. Nagibin
Siberian Federal University.
Russian Federation

Cand. Sci. (Phys.-Math.), assistant prof. of Designing of buildings and expertise of real estate Department
of Institute of Engineering and Construction.

660074, Russia, Krasnoyarsk, Borisova str., 20.



A. V. Zavadyak
LLC UC RusA.
Russian Federation

Deputy director on high-amperage technology creation of Engineering and Technology Directorate of aluminium production.

660067, Russia, Krasnoyarsk, Pogranichnikov str., 37/1.



I. I. Puzanov
LLC UC RusA.
Russian Federation

Manager, Engineering and Technology Directorate of aluminium production.

660067, Russia, Krasnoyarsk, Pogranichnikov str., 37/1.



A. V. Proshkin
LLC UC RusA.
Russian Federation

Dr. Sci. (Tech.), head of laboratory of carbon and wearing materials of Engineering and Technology Directorate
of aluminium production.

660067, Russia, Krasnoyarsk, Pogranichnikov str., 37/1.



E. N. Fedorova
Siberian Federal University; Siberian Branch of Russian Academy of Sciences.
Russian Federation

Cand. Sci. (Tech.), assistant prof. of Applied Mechanics Department of Polytechnic Institute; senior researcher of Institute of Computational Technologies.

660074, Russia, Krasnoyarsk, Borisova str., 20.

660049, Russia, Krasnoyarsk, Mira str., 53.



S. S. Dobrosmyslov
Siberian Federal University; Siberian Branch of Russian Academy of Sciences.
Russian Federation

Cand. Sci. (Tech.), assistant prof. of Designing of buildings and expertise of real estate Department of Institute of Engineering and Construction; researcher of Krasnoyarsk Scientific Centre.

660074, Russia, Krasnoyarsk, Borisova str., 20.

660049, Russia, Krasnoyarsk, Mira str., 53.



I. A. Kirillova
Siberian Federal University.
Russian Federation

Cand. Sci. (Tech.), assistant of the Department «Composite materials and physics-chemistry of metallurgical processes» of the Institute of Non-Ferrous Metals and Materials Science.

660122, Russia, Krasnoyarsk, Academic Pavlova str., 77-2.



N. V. Sukhodoeva
Siberian Federal University.
Russian Federation

Engineer of Applied Mechanics Department of Polytechnic Institute.

660074, Russia, Krasnoyarsk, Borisova str., 20.



References

1. Sorlie M., Øye H.A. Cathodes in aluminium electrolysis. 3-rd ed. Dusseldorf: Aluminium-Verlag Marketing and Kommunikation GmbH, 2010.

2. Сизяков В.М., Власов А.А., Бажин В.Ю. Стратегические задачи металлургического комплекса России. Цвет. металлы.2016. No. 1. C. 32—38.Sizyakov V.M., Vlasov A.A., Bazhin V.Yu.Strategy of the metallurgical industry of Russia. Tsvetnye metally. 2016. No. 1. P. 32—38 (In Russ.).

3. Фещенко Р.Ю. Интенсификация процесса высоко-амперного электролиза криолитоглиноземных расплавов в пусковой период: Дис. … канд. техн. наук. СПб: Нац. минер.-сырьевой ун-т «Горный», 2014. Feshchenko R.Yu. Intensification of the electrolysis of high-amperage of cryolite-alumina melts during the startup period: Dissertation of PhD. Saint-Petersburg: National Mineral and Raw University «Gornyi», 2014 (In Russ.).

4. Юрков А.Л. Проблема материаловедения углеродных подовых блоков для алюминиевых электролизеров. Росс. хим. журн. 2006. Т. 50. No. 1. С. 35—42.Yurkov A.L. The problem of materials science of carbon bottom blocks for aluminum cells. Rossiiskii khimicheskii zhurnal.2006. Vol. 50. No. 1. P. 35—42 (In Russ.).

5. Rafiei P., Hiltmann F., Hyland M., James B., Welch B. Electrolytic degradation within cathode materials. Light Metals. 2001. P. 747—752.

6. Øye H.A., Welch B.J. Cathode performance: The influence of design, operations, and operating conditions.JOM. Vol. 50. Febr. 1998. Р. 18—23.

7. Костюков А.А. Справочник металлурга по цветным металлам. М.: Металлургия, 1971. C. 248—250.Kostukov A.A. The metallurgist’s guide on non-ferrous metals. Moscow: Metallurgiya, 1971. P. 248—250 (In Russ.).

8. Матвеичев А.Н., Горбунов В.А., Коршунов А.Ф. Способ горячего ремонта футеровки электролизера: Пат. 3793386/22-02 (СССР). 1986.Matveichev A.N., Gorbunov V.A., Korshunov A.F. A method for hot patching of the cell lining: Pat. 3793386/22-02 (USSR). 1986 (In Russ.).

9. Yurkov A.L. Refractories and carbon cathode materials for the aluminum industry. Chapter 2. Refractories and carbon cathode blocks for electrolytic production of aluminum. Refract. Ind. Ceram. 2005. Vol. 46. No. 6. P. 365—760.10. Чанг Х. Материалы, используемые в производстве алюминия методом Эру-Холла. Пер. с англ. П. Полякова. Красноярск: КГУ, 1998.Chang Kh. Materials used in the production of aluminum by the Héroult-Hall method. Engl. transl. P. Polyakov. Krasnoyarsk: KGU, 1998 (In Russ.).

10. Парамонов С.А., Рагозин Л.В., Ефимов А.А., Горковенко В.И., Пухнаревич В.П. Способ горячего ремонта локальных разрушений углеродистой подины ка-тодного устройства алюминиевого электролизера: Пат. 2270886 (РФ). 2006.Paramonov S.A., Ragozin L.V., Efimov A.A., Gorkovenko V.I., Pukhnarevich V.P. A method for the hot patching of localized failure of the carbonaceous bottom of the cathode device of an aluminum electrolysis cell: Pat. 2270886 (RF). 2006 (In Russ.).

11. Кореневский А.Д., Дмитриев В.А., Крячко К.Н., Мамилов В.В. Многоблочный проточный электролизер для извлечения металлов из растворов их солей: Пат. 2109088C1 (РФ). 1996.Korenevskii A.D., Dmitriev V.A., Kryachko K.N., Mamilov V.V. Multi-block f low electrolyzer for the extraction of metals from their salts solutions: Pat. 2109088C1 (RF). 1996 (In Russ.).

12. Nora V., Duruz J.-J., Cronin B. Composite cell bottom for aluminum electrowinning: Pat. 5203971 (USA). 1993.

13. Devyatkin S.V.Chemical and electrochemical behavior of titanium diboride in cryolite-alumina melt and in molten aluminum.J. Solid State Chem. 2000. Vol. 154. No. 1. P. 107—109.

14. Самсонов Г.В., Панасюк А.Д., Боровикова М.С. Контактное взаимодействие тугоплавких соединений с жидкими металлами. Порошк. металлургия. 1973. No. 6. С. 51.Samsonov G.V., Panasyuk A.D., Borovikova M.S. Contact interaction of refractory compounds with liquid metals. Poroshkovaya metallurgiya. 1973. No. 6. P. 51 (In Russ.).

15. Минцис М.Я. Электрометаллургия алюминия. Новосибирск: Наука, 2001.Mintsis M.Ya.Aluminium electrometallurgy. Novosibirsk: Nauka, 2001 (In Russ.).

16. Finch C.B. Crack formation and swelling of TiB2—Ni ceramics in liquid aluminum. J. Amer. Ceram. Soc. 1982. Vol. 65. Iss. 7. P. 100—101.18. Li J., Lu X.-j., Lai Y.-q., Li Q.-y., Liu Y.-x. Research progress in TiB2wettable cathode for aluminum reduction. JOM. 2008. No. 8. P. 32—37.

17. Ibrahiem M.O., Foosnes T., Øye H.A. Properties of pitch and furan-based TiB2—C cathodes. Light Metals.2008. P. 1013 —1018 .

18. Novak B. Fundamentals of aluminium carbide formation. Light Metals. 2012. P. 1343—1348.

19. Li J.Electrical resistivity of TiB2/С composite cathode coating for aluminum electrolysis. J. Central South Univ. Technol. 2006. Vol. 13. No. 3. P. 209—213.

20. Пузанов И.И., Завадяк А.В., Прошкин А.В., Нагибин Г.Е., Добросмыслов С.С., Фёдорова Е.Н. Способ горячего ремонта локальных разрушений подины алюминиевого электролизера: Пат. 2629421 (РФ). 2017.Puzanov I.I., Zavadyak A.V., Proshkin A.V., Nagibin G.E., Dobrosmyslov S.S., Fedorova E.N. A method for the hot patching of localized failure of the bottom of an aluminum electrolysis cell: Pat. 2629421 (RF). 2017 (In Russ.).

21. Нагибин Г.Е., Пузанов И.И., Завадяк А.В., Прошкин А.В., Добросмыслов С.С., Фёдорова Е.Н. Повышение ресурса алюминиевого электролизера за счет горячего локального ремонта подины. В сб.: Матер. IX Междунар. конгр. «Цветные металлы и минералы»(г. Красноярск, 11—15 сент. 2017 г.). Красноярск: Науч-иннов. центр, 2017. С. 334—337.Nagibin G.E., Puzanov I.I., Zavodyak A.V., Proshkin A.V., Dobrosmyslov S.S., Fedorova E.N. Increase of the resource of the aluminum cell due to hot local patching of the bottom. In: Collection of materials of IX Intern. congress of non-ferrous metals and minerals (Krasnoyarsk, 11—15 Sept. 2017). Krasnoyarsk: Science and Innovation Centre Publ. House, 2017. P. 334—337 (In Russ.).


Review

For citations:


Nagibin G.E., Zavadyak A.V., Puzanov I.I., Proshkin A.V., Fedorova E.N., Dobrosmyslov S.S., Kirillova I.A., Sukhodoeva N.V. Development and industrial tests of composite material based on TiB2 for repair of local destructions in electrolyzer bottom blocks. Izvestiya. Non-Ferrous Metallurgy. 2019;(3):12-19. (In Russ.) https://doi.org/10.17073/0021-3438-2019-3-12-19

Views: 806


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)