Investigation of flocculant influence on the kinetic parameters of copper recovery in aqueous solution with metal zinc
https://doi.org/10.17073/0021-3438-2019-3-4-11
Abstract
We studied a number of models for the description of copper reduction by fine zinc powder in aqueous solutions. The experimentswere carried out in devices with a magnetic stirrer at mixing speeds of 40–150 rpm and temperatures of 15–50 °C. We investigated the influence exerted on the process by macromolecular flocculants such as non-ionic magnafloc 333, cationic besflok 6645 and anionic besfloc 4034. Under industrial conditions, these flocculants are used at the hydrolytic solution purification stage and then they are fed to cementing purification together with the clarified solution. Aqueous flocculant solutions of 2,5 g/l containing 2–4 g/l of zinc dust and 50–200 mg/l of flocculant were used in the experiments. Copper content in the initial and final solutions was quantitatively determined by spectrophotometric analysis with the preliminary copper transfer to the ammonia complex. Experiment duration varied from 1 to 8 min. The degree of copper reduction from solutions was 10–90 %. It was found that at low mixing rates the process kinetics can be described by the kinetic equation of the first order. At high speeds, the kinetics of the studied heterogeneous reactionwith added flocculants is more adequately described by the velocity change equation as a square root of the process duration. It wasshown that the highest constant of cementation rate is observed in experiments without the addition of surfactants. Anionic flocculant slows down the cementation process to a lesser extent than cationic one, which is consistent with the theory of electrochemical processes and shows that the discharge of copper cations under these conditions limits the cementation process. Regularities revealed in the studied process remain as temperature increases. It was noted that the addition of high-molecular substances with a relative molecular mass of 20 million in an amount of 50–200 mg/l inhibit the cementation process. This fact must be taken into account in industrial conditions where cementing purification from copper and other impurities is carried out from flocculant-containing solutions.
Keywords
About the Authors
A. V. KolesnikovRussian Federation
Dr. Sci. (Tech.), prof. of the Department of analytical and physical chemistry.
454001, Russia, Chelyabinsk, Brat’ya Kashiriny str., 129.
I. V. Tsyganova
Russian Federation
Assistant of the Department of analytical and physical chemistry.
454001, Russia, Chelyabinsk, Brat’ya Kashiriny str., 129.
References
1. Колесников А.В., Працкова С.Е. Теория и практика очистки растворов цинковой пылью в гидрометаллургии. Экспериментальные и теоретические данные. Рига: Palmarium Academic Publishing, 2017. Kolesnikov A.V., Pratskova S.E. Theory and practice of purification of solutions of zinc dust in hydrometallurgy. Experimental and theoretical data. Riga: Palmarium Academic Publishing, 2017 (In Russ.).
2. Алкацев М.И. Процессы цементации в цветной металлургии. М.: Металлургия, 1981.Alkatsev M.I. The processes of cementation in nonferrous metallurgy. Moscow: Metallurgiya, 1981 (In Russ.).
3. Айдаров Р.Ж., Айдарова П.И., Шишкин В.И., Усенов А.У. Влияние содержания меди на процесс медно-кадмиевой очистки цинкового электролита. Цвет. металлургия. 1971. No. 2. С. 27—29.Aidarov R.Zh., Aidarova P.I., Shishkin V.I., Usenov A.U.Influence of copper content on the process of copper-cadmium purification of zinc electrolyte. Tsvetnaya metallurgiya.1971. No. 2. P. 27—29 (In Russ.).
4. Салин А.А. О глубокой очистке цинкового электролита. Цвет. металлы. 1964. No. 7. С. 46—51.Salin A.A. About deep cleaning of zinc electrolyte. Tsvetnye metally. 1964. No. 7. P. 46—51 (In Russ.).
5. Григорьев В.Д., Садыков С.Б., Сапрыгин А.Ф., Набойченко С.С. Совершенствование технологии очистки цинковых растворов от примесей легированной цинковой пылью. Цвет. металлургия. 2004. No. 1. С. 15—18.Grigor’ev V.D., Sadykov S.B., Saprygin A.F., Naboichenko S.S. Improvement of technology of cleaning of zinc solutions from admixtures of alloy zinc dust. Tsvetnaya metallurgiya.2004. No. 1. P. 15—18 (In Russ.).
6. Саркисян Н.С., Епископосян М.Л. Кинетика цементации кадмия цинком из сульфатных и хлоридных растворов. Цвет. металлы. 1980. No. 2. С. 24—26.Sarkisyan N.S., Episkoposyan M.L. Kinetics of cadmium cementation with zinc from sulphate and chloride solutions. Tsvetnye metally. 1980. No. 2. P. 24—26 (In Russ.).
7. Krupkowa Danuta.Cementation treatment of industrial solutions of zinc sulfate. Rud Imetaleniezel. 1979. Vol. 24. No. 2. P. 65—75.
8. Quathers R.The method of purification of the electrolyte in hydrometallurgy of zinc. Metallurgie.1976. Vol. 16. No. 3. P. 164—166.
9. Singh V. Technological progress in the purification of zinc electrolyte at the hydrometallurgical plant, which reduced the consumption of zinc dust. Hydrometallurgy. 1996. Vol. 40. No. 1—2. P. 247—262.
10. Левин А.И. О применении ПАВ в электрохимии тяжелых цветных металлов. Цвет. металлы. 1980. No. 8. С. 12—16.Levin A.I. On the use surfactants in the electrochemistry of heavy non-ferrous metals. Tsvetnye metally.1980. No. 8. P. 12—16 (In Russ.).
11. Karavasteva M. The influence of certain surfactants on the cementation of cobalt with zinc powder from zinc sulfate solutions. Can. Met. Quart.2001. Vol. 40. No. 2. P. 179 —18 4.
12. Karavasteva M. Influence of surfactants on the cementation of Nickel by zinc powder from zinc sulfate solutions in the presence of copper. Can. Met. Quart.1999. Vol. 38. No. 3. P. 207—209.
13. Karavasteva M. The effect of copper on the cementation of cadmium by zinc powder in the presence of surfactants. Hydrometallurgy.1998. Vol. 48. No. 3. P. 361—366.
14. Казанбаев Л.А., Козлов П.А., Колесников А.В., Болдырев В.В., Павлов А.Д., Черняков М.А. Способ очистки сульфатных цинковых растворов от примесей: Пат. 2282671 (РФ). 2006. Kazanbaev L.A., Kozlov P.A., Kolesnikov A.V., Boldyrev V.V., Pavlov A.D., Chernyakov M.A. The method of purification of zinc sulphate solutions from impurities: Pat. 2282671 (RF). 2006 (In Russ.).
15. Antsinger Andreas. On the influence of impurities in the electrolyte on the current output and specific power consumption of zinc solutions. Erzmetall.1989. Vol. 42. No. 12. P. 553—559.
16. Vander Pas. V., Dreisinger D.B. Fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy.1996. Vol. 41. No. 43. P. 187—205.
17. Dajin Yang, Gang Xie, Guisheng Zeng.The mechanism of removal of cobalt from zinc sulfate solutions in the presence of cadmium. Hydrometallurgy.2006. Vol. 81. No. 1. P. 62—66.
18. Nelson A., Demopoulos G.P., Houlachi G.The effect of solution cons tituentsandnovel activatorson cobalt cementation. Can. Met. Quart.2000. Vol. 39. No 2. P. 175—186.
19. Прикладная электрохимия: Учеб. для вузов. Под ред. А.П. Томилова. М.: Химия, 1984. Applied electrochemistry: Text-book for universities. Ed. A.P. Tomilov. Moscow: Chemistry, 1984 (In Russ.).
20. Колесников А.В. Восстановление меди металлическим цинком в водных растворах в присутствии высокомолекулярных ПАВ. Конденсированные среды и межфазные границы. 2016. Т. 18. No. 1. С. 46—55.Kolesnikov A.V. Copper reduction with metallic zinc in aqueous solutions in the presence of high-molecular surfactants. Kondensirovannye sredy i mezhfaznye granitsy. 2016. Vol. 18. No. 1. P. 46—55 (In Russ.).
21. Вольдман Г.М., Зеликман А.Н. Теория гидрометаллургических процессов. М.: Интермет Инжиниринг, 2003.Vol’dman G.M., Zelikman A.N. Theory of hydrometallurgical processes. Moscow: Intermet Engineering, 2003 (In Russ.).
22. Берман И.А. К вопросу о методике исследования и подходе к механизму гетерогенной реакции вытеснения из раствора ионов более благородного металла менее благородным. Журн. физ. химии. 1958. Т. 32. No. 9. С. 1971—1979.Berman I.A. To the question of the research method and approach to the mechanism of heterogeneous reaction of displacement of more noble metal ions from the solution less noble. Zhurnal fizicheskoi khimii. 1958. Vol. 32. No. 9. P. 1971—1979 (In Russ.).
23. Алкацев М.И. Теоретические основы процессов цементации. Владикавказ: Терек, 1994.Alkatsev M.I.Theoretical bases of processes of cementation. Vladikavkaz: Terek, 1994 (In Russ.).
24. Ротинян А.Л., Тихонов К.И., Шошина И.А. Теоретическая электрохимия. Под ред. А.Л. Ротиняна. Л.: Химия, 1981. Rotinyan A.L., Tikhonov K.I., Shoshina I.A. Theoretical electrochemistry. Leningrad: Khimiya, 1981.
Review
For citations:
Kolesnikov A.V., Tsyganova I.V. Investigation of flocculant influence on the kinetic parameters of copper recovery in aqueous solution with metal zinc. Izvestiya. Non-Ferrous Metallurgy. 2019;(3):4-11. (In Russ.) https://doi.org/10.17073/0021-3438-2019-3-4-11