Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of magnetic field on structure formation at crystallization and physical-mechanical properties of aluminum alloys

https://doi.org/10.17073/0021-3438-2019-2-51-57

Abstract

The paper presents an investigation of the structure and mechanical properties of A356.0 and A413.1 cast aluminum alloys subjected to a pulsed magnetic field of different saturation during crystallization. It was established during experiments that samples contain in their composition two phases that crystallize at certain temperature intervals and do not change even when magnetic field is applied to the crystallizing melt. A temperature gradient was found between the mold wall and the outer wall of the crucible for both alloys, which varies between <14,3 and 16,0 °C/mm, as well as the crystallization time of each phase. Using thermophysical approaches, a linear crystallization rate was found for both alloys. It was determined that it decreases with decreasing temperature gradient, while the crystallization time of phases increases. It was found that the magnetic field changes the distribution of dendrites over the volume of A356.0 and A413.1 alloys, as well as their dimensions and orientation in the section plane. With an increase in the magnetic field induction amplitude, a finer structure is formed in the а-phase of the alloy, which uniformly fills the section plane, and this is reflected in its mechanical properties. The hardness of the investigated alloys increases with an increase in the amplitude of the pulsed magnetic field induction by approximately 8—10 % for both alloys due to the refinement of the dendritic structure and a more even distribution of а-solid solution dendrites over the volume of the crystallizing sample. In addition, the magnetic field affects the ultimate tensile strength, and practically does not change the value of relative elongation under uniaxial tension of the investigated A356.0 and A413.1 alloys.

About the Authors

K. N. Vdovin
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation

Dr. Sci. (Tech.), Prof., Head of Department of the technology of metallurgy and casting processes.

455000, Magnitogorsk, Lenina av., 38



G. A. Dubsky
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation

Cand. Sci. (Phys.-Math.), Associate prof., Department of physics, MSTU.

455000, Magnitogorsk, Lenina av., 38



V. B. Deev
Wuhan Textile University; National University of Science and Technology «MISIS»
China

Dr. Sci. (Tech.), Professor of School of Mechanical Engineering and Automation of Wuhan TU, Professor of Department of foundry technologies and art processing materials, NUST «MISIS».

Textile Road 1, Hongshan District, Wuhan, 430073, P.R. China;119049, Moscow, Leninskii pr., 4



L. G. Egorova
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of computer science and applied mathematics, MSTU.

455000, Magnitogorsk, Lenina av., 38



A. A. Nefediev
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of physics, MSTU.

455000, Magnitogorsk, Lenina av., 38



E. S. Prusov
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of technology of functional and structural materials.

600000, Vladimir, Gorky str., 87



References

1. Timelli G., Fiorese E. Metodi di neutralizzazione del Fe in leghe Al—Si da fonderia. Metall. Ital. 2011. Vol. 103. No. 3. P. 9—23.

2. Li Q.L., Xia T.D., Lan Y.F., Li P.F. Effects of melt superheat treatment on microstructure and wear behaviours of hypereutectic Al—20Si alloy. Mater. Sci. Technol. 2014. Vol. 30. (7). P. 835—841.

3. Peng J., Jinyang Z., Haoran G., Zhongxi Y., Xinying T., Degang Z., Yan W., Min Z., Ningqiang S. Effect of melt superheating treatment on solidification structures of Al75Bi9Sn16 immiscible alloy. J. Molecular Liquids. 2017. Vol. 232. P. 457—461.

4. Deev V.B., Selyanin I.F., Ponomareva K.V, Yudin A.S., Tsetsorina S.A. Fast cooling of aluminum alloys in casting with a gasifying core. Steel in Trans. 2014. Vol. 44. No. 4. Р. 253—254.

5. Yang W, Yang X., Ji S. Melt superheating on the microstructure and mechanical properties of diecast Al—Mg—Si—Mn alloy. Metal. Mater. Int. 2015. Vol. 21. No. 2. P. 382—390.

6. Deev V.B., Degtyar V.A., Kutsenko A.I., Selyanin,I.F., Voitkov A.P. Resource-saving technology for the production of cast aluminum alloys. Steel in Trans. 2007. Vol. 37. No. 12. P. 991-994.

7. Deev V.B., Ponomareva K.V., Yudin A.S. Investigation into the density of polystyrene foam models when implementing the resource-saving fabrication technology of thin-wall aluminum sheet. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 3. P. 283—286.

8. Vorozhtsov S., Kudryashova O., Promakhov V., Dammer V., Vorozhtsov A. theoretical and experimental investigations of the process of vibration treatment of liquid metals containing nanoparticles. JOM. 2016. Vol. 68. No. 12. P. 3094—3100.

9. Eskin D.G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Mater. Sci. Technol. 2017. Vol. 33. No. 6. P. 636—645.

10. Zhang Y., Svynarenko K., Li T. Effect of ultrasonic treatment on formation of iron-containing intermetallic compounds in Al—Si alloys. China Foundry. 2016. Vol. 13. No. 5. P. 316—321.

11. Komarov S., Ishiwata Y., Mikhailov I. Industrial application of ultrasonic vibrations to improve the structure of Al— Si hypereutectic alloys: Potential and limitations. Metal. Mater. Trans. A. 2015. Vol. 46. P. 2876—2883.

12. Rabiger D., Zhang Y., Galindo V, Franke S., Willers B., Eckert S. The relevance of melt convection to grain refinement in Al—Si alloys solidified under the impact of electric currents. Acta Mater. 2014. Vol. 79. P. 327—338.

13. Prodhan A. Semi-solid processing by electric current during sand casting of aluminium alloys. IOP. Conf. Series: Mater. Sci. Eng. 2016. Vol. 115. Article No. 012005.

14. Zhang Y., Rabiger D., Willers B., Eckert S. The effect of pulsed electrical currents on the formation of macrosegregation in solidifying Al—Si hypoeutectic phases. Int. J. Cast Met. Res. 2017. Vol. 30. P. 13—19.

15. Zhang Y., Cheng X., Zhong H., Xu Z., Li L., Gong Y., Miao X., Song C., Zhai Q. Comparative study on the grain refinement of Al—Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals. 2016. Vol. 6. Article No. 170.

16. Bustos O., Ordonez S, Colas R Rheological and Microstructural study of A356 alloy solidified under magnetic stirring. Int. J. Metalcast. 2013. Vol. 7. No. 1. P. 29—37.

17. Wang X., Luo X., Cong F., Cui J. Research progress of microstructure control for aluminium solidification process. Chin. Sci. Bull. 2013. Vol. 58. No. 4-5. P. 468—473.

18. Deev V.B., Prusov E.S., Kutsenko A.I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. 2018. Metal. Ital. Vol. 110. No. 2. P. 16—24.

19. Wenhui Ma, Guoqiang Lv,Yufeng Zhang, Yun Lei, Xi Yang. An efficient method to separate silicon from high-silicon aluminum alloy melts by electromagnetic directional solidification. J. Cleaner Product. 2018. Vol. 185. No. 1. P. 389—398.

20. Chengshuai Li, ShaodongHu, Zhongming Ren, Yves Fautrelle, Xi Li. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum. J. Mater. Sci. Technol. 2018. Vol. 34. No. 12. P. 2431—2438. DOI: https://doi.org/10.1016/jjmst.2018.04.013.

21. Charles Vives. Effects of a magnetically forced convection during the crystallization in mould of aluminium alloys. J. Crystal Growth. 1989. Vol. 94. No. 3. P. 739—750.

22. Timoshkin I.Yu., Nikitin K.V., Nikitin V.I., Deev V.B. Influence of treatment of melts by electromagnetic acoustic fields on the structure and properties of alloys of the Al—Si system. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 5. P. 419—423.

23. Nikitin K.V, Nikitin V.I., Timoshkin I.Yu., Glushchen-kov V.A., Chernikov D.G. Melt treatment by pulsed magnetic fields aimed at controlling the structure and properties of industrial silumins. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 3. P. 202—210.

24. Ivanov Y.F., Alsaraeva K.V., Gromov V.E., Popova N.A., Konovalov S.V Fatigue life of silumin treated with a high-intensity pulsed electron beam. J. Surf. Invest. X-ray, Synchrotron and Neutron Techniques. 2015. Vol. 9. No. 5. P. 1056—1059.

25. Ivanov Y.F., Alsaraeva K.V, Gromov VIE., Konovalov S.V, Semina O.A. Evolution of Al—19,4Si alloy surface structure after electron beam treatment and high cycle fatigue. Mater. Sci. Technol. (UK). 2015. Vol. 31. No. 13a. P. 1523—1529.

26. Vdovin K.N., Dubski G.A., Egorova L.G. Influence of magnetic field on process of crystallization of aluminum alloys. Iz.v. vuzov. Tsvet. metallurgiya. 2018. No. 2. P. 34—42 (In Russ.).

27. Sudheer R., Prabhu K.N. A computer aided cooling curve analysis method to study phase change materials for thermal energy storage applications. Mater. and Design. 2016. Vol. 95. P. 198—203.

28. Timelli G., Ferro P., Bonollo F. Compositi a matrice di alluminio solidificati in presenza di vibrazioni meccani-che: Caratteristiche microstrutturali. Metall. Ital. 2010. Vol. 102. No. 1. P. 1—11.

29. Prusov E.S., Panfilov A.A. Properties of cast aluminum-based composite alloys reinforced by endogenous and exogenous phases. Russ. Metall. (Metally). 2011. No. 7. P. 670—674.

30. Nordin N., Abubakar T, Hamzah E., Farahany S., Ourdjini A. Effect of superheating melt treatment on mg2si particulate reinforced in Al—Mg2Si—Cu in situ composite. Proc. Eng. 2017. Vol. 184. P. 595—603.


Review

For citations:


Vdovin K.N., Dubsky G.A., Deev V.B., Egorova L.G., Nefediev A.A., Prusov E.S. Influence of magnetic field on structure formation at crystallization and physical-mechanical properties of aluminum alloys. Izvestiya. Non-Ferrous Metallurgy. 2019;(2):51-57. (In Russ.) https://doi.org/10.17073/0021-3438-2019-2-51-57

Views: 733


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)