Interaction of magnesium production salt melts with atmospheric air
https://doi.org/10.17073/0021-3438-2019-2-13-25
Abstract
The paper provides a review of the literature on the interaction of magnesium production salt melts with atmospheric air. The method for measuring the mass of reaction products of the molten salt with air is described. The results of investigation of hydrogen chloride and chlorine emission intensity by salt melts of MgCl2-KCl-NaCl, MgCl2-KCl-NaCl-BaCl2, MgCl2—KCl—NaCl—CaCl2 systems, as well as the intensity of HCl + HBr and Cl2 + Br2 gas emission by MgCl2—KCl—NaCl—NaBr system salt melts are presented. Thermodynamic analysis of reactions of interaction of magnesium salt melts with atmospheric air is carried out. It is determined that magnesium chloride in salt melt interacts with atmospheric air most intensively with the release of chlorine and hydrogen chloride. Specific rates of halogen-containing gases formation per unit surface area of the MgCl2-KCl-NaCl, Mga2-KCl-NaCl-BaCl2, MgCl2-KCl-NaCl-CaCl2, MgCl2-KCl-NaCl-NaBr systems are measured. The influence of calcium chloride, sodium bromide and magnesium fluoride on the intensity of halogen-containing gases emission by the surface of salt melts is studied. It is found that the addition of magnesium fluoride in the composition of chloride melts reduces the intensity of chlorine and hydrogen chloride emission.
About the Authors
I. M. KomelinRussian Federation
Leading engineer, Department of non-ferrous metals and gold, NUST «MISIS».
119049, Moscow, Leninskii pr., 4
A. P. Lysenko
Russian Federation
Cand. Sci. (Tech.), Associate professor, Department of non-ferrous metals and gold, NUST «MISIS».
119049, Moscow, Leninskii pr., 4
References
1. Lebedev V.A., Sedykh V.I. Magnesium metallurgy: Manual. Yekaterinburg: UGTU-UPI, 2010 (In Russ.).
2. Barannik I.A., Komelin I.M., Petriv M.I., Zhurov V.V. Flux for melting and refining of magnesium and its alloys: Pat. 36141 А (Ukraine). 1999 (In Russ.).
3. Zhurov V.V., Komelin I.M., Barannik I.A., Sikorskaya I.L. Method for the continuous refining of magnesium: Pat. 41575 (Ukraine). 2009 (In Russ.).
4. Komelin I.M., Barannik I.A., Gerb A.P., Petriv M.I. A method for preparing flux for melting and refining magnesium and its alloys: Pat. 12704 (Ukraine). 2005 (In Russ.).
5. Teterin V.D., Bezdolya I.N., Shundikov N.A., Mihajlov E.F., Paderina N.S. A method of obtaining a flux for smelting and refining of magnesium or its alloys: Pat. 2407813 (Russia). 2009 (In Russ.).
6. Gryshchenko R.V. Improvement of technology and intensification of the electrolytic production of a magnesium: Abstr. of dissertation of PhD. St. Petersburg: JSC VAMI, 2003. http://tekhnosfera.com/usovershenstvovanie-tehnologii-i-intensifikatsiya-elektroliticheskogo-proizvodstva-magniya (In Russ.).
7. Zuca S, Olteanu M, Borcan R., Popescu A. M, Ciochina M. Electrical conductivity, density, and viscosity of molten MgCl2—CaCl2—NaCl—KCl quaternary system. Chem. Papers. 1991. Vol. 45 (5). Р 585-592.
8. Kashani-Nejad S. Oxides in the dehydration of magnesium chloride hexahydrate. Montreal: McGill University, 2005. http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1542009118739~643.
9. Skar R.A. Chemical and electrochemical characterization of oxide/hydroxide impurities in the electrolyte for magnesium production. Avhandling: Norges Teknisk-naturvitenskapelige Universitet, 2001. No. 104. Р. 2122. https://brage.bibsys.no/xmlui/bitstream/handle/11250/244438/121627_FULLTEXT01.pdf?sequence=1.
10. Bakker J.S-C. The recovery of magnesium oxide and hudrogen chloride from magnesium chloride brines and molten salt hydrates. Canada, Ontario, Kingston: Queen’s University, 2011. P. 290. https://qspace.library.queensu.ca/bitstream/handle/1974/6337/de%20Bakker_Jan_S_C_201103_PhD.pdf?sequence=1.
11. Smeets B., Iype E., Nedea S.V, Zondag H.A., Rindt C.C.M. A DFT based equilibrium study on the hydrolysis and the dehydration reactions of MgCl2 hydrates. J. Chem. Phys. 2013. Vol. 139. P. 124312. DOI:dx.doi/org/10.1063/1.4822001.
12. Huang Q., Lu G., Wang J., Yu J. Thermal decomposition mechanisms of MgCl2'6H2O and MgCl2•H2O. J. Anal. Appl. Pyrol. 2011. Vol. 91. Р.159-164.
13. Ozcan H. Experimental and theoretical investigations of magnesium chlorine cycle and its integrated systems: A thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy. Canada, Ontario, Oshawa: University of Ontario, Institute of Technology, 2015. Р. 106-114.
14. Pathak A.D., Tranca I., Nedea S.V, Zondag H.A., M. Rindt C.C., Smeulders D.M.J. First-principles study of chemical mixtures of CaCl2 and MgCl2 hydrates for optimized seasonal heat storage. J. Phys. Chem. 2017. Vol. 121. Р. 20576-20590. DOI: dx.doi.org/10.1021/acs.jpcc.7b05245.
15. Lai G.Y. High-temperature corrosion and materials applications. Ohio: ASM International, 2007. Р. 409-421. DOI:dx.doi.org/10.1361/hcma2007p001.
16. Sotelo-Mazon O., Cuevas-Arteagal.C., Porcayo-Calderon J., Salinas Bravo V.M., Izquierdo-Montalvo G. Corrosion behavior of pure Cr, Ni, and Fe exposed to molten salts at high temperature. Ad. Mater. Sci. Eng. 2014. Article ID 923271. DOI: dx.doi.org/10.1155/2014/923271.
17. Strelets Kh. L., Bondarenko N.V. The effect of electrolyte composition and other factors on the formation of magnesium oxide by electrolysis. Trudy VAMI. 1965. No. 54-55. P. 321-330 (In Russ.).
18. Reznikov I.L., Mokrova L.N. Thermodynamic properties of MgCl2 in the melts derived from the artificial carnallite. Izv. vuzov. Tsvet. metallurgiya. 1970. No. 6. P. 64-68 (In Russ.).
19. Muzhzhavlev K.D. Effect of air humidity on the reaction rate of magnesium chloride hydrolysis. Trudy VAMI. 1971. No. 75. P. 38-42 (In Russ.).
20. Ivanov A.B., Zuev N.M. Equilibrium hydrolysis of magnesium chloride in the electrolyte. Zhurnal Prikladnoi Khimii. 1968. No. 8. P. 1693 (In Russ.).
21. Muzhzhavlev K.D., Ivanov A.B. Influence of humidity and lithium chloride additives on the hydrolysis of magnesium chloride in various electrolytes. Zhurnal Prikladnoi Khimii. 1972. Vol. XLV. No. 6. P. 1211-1215 (In Russ.).
22. Savinkova E.I., Lelekova R.P., Efremova T.V. Equilibrium of hydrolysis of magnesium chloride in melt of potassium and sodium chlorides. In: Electrochemical and thermodynamic properties of ionic melts (Ed. Delamarsky Yu.K.). Kiev: Naukova dumka, 1977. P. 98-100 (In Russ.).
23. Muzhzhavlev K.D. Influence of humidity on the rate of reaction of hydrolysis of magnesium chloride. Trudy VAMI. 1971. No. 75. P. 38-42 (In Russ.).
24. Vindstad J.E., Mediaas H., 0stvold T., Rosendahl C.N. Hydrolysis of MgCl2-containing melts. Acta Chem. Scandinavica. 1997. No. 51 (12). Р. 1192-1200. DOI:dx.doi.org/10.3891/acta.chem.scand.51-1192.
25. Kaur H., Gray M.R., Eaton P.E. Kinetics & inhibition of chloride hydrolysis in Canadian bitumens. Petrol. Sci. Technol. 2012. No. 30(10). P. 993-1003. DOI:dx.doi.org/10.1080/10916466.2010.497787/
26. Allal K.M., Dolignier J.C., Martin G. Determination of thermodynamical data of calcium hydroxichloride. Revue de l’Institut Frangais Du Petrole. 1997. Vol. 52. No. 3. Р. 361-368.
27. Pathak A. D., Nedea S., Zondag H., Rindt C., Smeulders D. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl2 hydrates and MgCl2 hydrates for seasonal heat storage. Phys.Chem. Chem. Phys. 2016. Vol. 18. P 10059. DOI: dx.doi.org/10.1039/c6cp00926c.
28. Kashani-Nejad S., Ng K-W, Harris R. Properties of magnesium hydroxychloride (MgOHCl). Metal. Trans. B. 2004. Vol. 35B(2). Р 406-408.
29. KreuhM., Kashani-NejadS, NgK.W, HarrisR. Behaviour of magnesium hydroxylchlorides in fused salt electrolyte. Magnesium technology: Proc. of Conf. Metallurgists. Miner., Metal. Mater. Soc. Canada, Ontario, Hamilton.
30. Mediaas H., Vinstad J. E., Ostvold T. Solubility of MgO in mixed chloride fluoride melts containing MgCi2. Acta Chem. Scandinavica. 1997. Vol. 51. P. 504-514.
31. Rao G.M. Effect of fluorspar on electrowinning of magnesium. J. Appl. Electrochem. 1986. Vol. 16. P 62628.
32. Shchegolev V.I., Lebedev O.A. Electrolytic receiving magnesium. Moscow: Ruda i metally, 2002 (In Russ.).
33. Strelets Kh.L., Desyatnikov O.G. The Density of molten salts isoconcentration cut (10% (wt.) MgCy of the system MgCl2-CaCl2-NaCl-KCl. Trudy VAMI. 1957. No. 39. P. 401-412 (In Russ.).
34. Krestovnikov A.N., Vladimirov L.P., Gulyanitskii B.S., Fisher A.Ya. Handbook for calculations of equilibrium in metallurgical reactions. Moscow: Metallurgizdat, 1963 (In Russ.).
35. Knunyants I.L. (Ed.). Chemical encyclopedia. Moscow: Sovetskaya entsiklopediya, 1988. Vol. 1 (In Russ.).
36. Knunyants I.L. (Ed.). Chemical encyclopedia. Moscow: Sovetskaya entsiklopediya, 1990. Vol. 2 (In Russ.).
37. Knunyants I.L. (Ed.). Chemical encyclopedia. Moscow: Bolshaya russkaya encyclopediya, 1992. Vol. 3 (In Russ.).
38. Zhukhovitskii A.A., Shvartsman L.A. Physical chemistry. Moscow: Metallurgiya. 1964. P. 83-84 (In Russ.).
39. Shoval S., Yariv S., Kirsh Y., Peled H. The effect of alkali halides on the thermal hydrolysis of magnesium chloride and magnesium bromide. Thermochim. Acta. 1986. Vol. 109. P. 207-226.
40. Komelin I.M. On the solubility of magnesium and calcium fluorides in salt melts of magnesium production. Message 1. In: Sbornik nauchnyh trudov Zaporozhskoj inzhener-noj akademii. 2011. Iss. 24. P 52-59. http://www.twirpx.com/file/1183546/ (In Russ.).
41. Komelin I.M. On the solubility of magnesium and calcium fluorides in salt melts of magnesium production. Message 2. In: Sbornik nauchnyh trudov Zaporozhskoj inzhener-noj akademii. 2011. Iss. 25. P. 52—63. http://www.twirpx.com/file/1183548/ (In Russ.).
42. Kudryavtsev A.A. Preparation of chemical equations. Moscow: Vysshaya shkola, 1991. P. 178, 179 (In Russ.).
43. Kochubei V.F., Moin F.B. Thermodynamics and kinetics of thermal oxidation of hydrogen chloride with oxygen. Zhurnal Prikladnoi Khimii. 1976. No. 10. P. 2220—2225 (In Russ.).
44. Orekhova A.I. About the prospects of expansion of a source of raw materials of the magnesian industry. Khimiya i khimicheskaya tekhnologiya. 2011. Vol. 54. No. 5. P. 61—65 (In Russ.).
45. Furman A.A. Inorganic chlorides. Moscow: Khimiya, 1980. P. 34, 35 (In Russ.).
46. Kritskaya E.B., Burylev B.P., Moisov L.P., Miroevskii G.P. The Study of physic-chemical properties of melts of chlorides of manganese and calcium. Rasplavy. 2003. No. 2. P. 75—81 (In Russ.).
47. Starovoitov E.M. Determination of heat of sublimation of the chlorides of barium and calcium and diffusion cross sections in the systems BaCl2-Ar, CaCl2-Ar. Teplofizi-ka vysokih temperatur. 1989. Vol. 27. No. 1. P. 68—73 (In Russ.).
48. Kikoin I.K. Еd.). Tables of physical quantities: Handbook. Moscow: Atomizdat, 1976 (In Russ.).
49. Table vapor pressure data for about 1800 inorganic and organic substances. http://www.physics.nyu.edu/kentlab/How_to/ChemicalInfo/VaporPressure/morepressure.pdf.
Review
For citations:
Komelin I.M., Lysenko A.P. Interaction of magnesium production salt melts with atmospheric air. Izvestiya. Non-Ferrous Metallurgy. 2019;(2):13-25. (In Russ.) https://doi.org/10.17073/0021-3438-2019-2-13-25