Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Efficiency of electrochemical membrane cleaning of process solutions from copper sulphate and trisodium phosphate

https://doi.org/10.17073/0021-3438-2019-1-75-81

Abstract

The paper considers the potential practical application of an electrochemical membrane method in the process of copper sulfate and trisodium phosphate removal from industrial water. The research objects were process solutions containing copper sulfate and trisodium phosphate and semipermeable polymeric membranes with various selective permeability characteristics. The study covers the effect that the transmembrane parameters of electromembrane separation have on the main kinetic characteristics of MGA-95P and OPM-K membranes in the process of copper smelting production water treatment. Approximation expressions were obtained to calculate membrane rejection rate depending on the physicochemical basis of the semipermeable membrane polymer, transmembrane pressure as well as process solution concentration and temperature. Empirical coefficients were determined to calculate and predict rejection rate values that can be used in the design of laboratory, pilot and industrial units used in the separation, treatment and concentration of industrial and waste water. The mathematical model of mass transfer was developed for electrochemical membrane separation taking into account assumptions made based on the solutions of the Nernst—Planck and Poisson—Boltzmann equations. This model allows for process physical description and calculations of concentration fields in the intermembrane channel and concentration changes in permeate and retentate lines. The mathematical model was checked for adequacy by comparing experimental data on retention rate with theoretical values where discrepancies between the experimental and theoretical data were within the limits of the experimental error and the error of calculated values.

About the Authors

O. A. Abonosimov
Tambov State Technical University (TSTU)
Russian Federation

Dr. Sci. (Tech.), associate prof., Department of applied geometry and computer graphics.

392000, Tambov, Sovetskaya str., 106



S. I. Lazarev
Tambov State Technical University (TSTU)
Russian Federation

Dr. Sci. (Tech.), prof., head of the Department of applied geometry and computer graphics, TSTU.

Tambov



S. I. Kotenev
Tambov State Technical University (TSTU)
Russian Federation

Postraduate student of the Department of applied geometry and computer graphics, TSTU.

Tambov



I. V. Selivanov
Tambov State Technical University (TSTU)
Russian Federation

Applicant of the Department of applied geometry and computer graphics, TSTU.

Tambov



K. K. Polyanskiy
Voronezh Branch of the Russian Economic University n.a. G.V. Plekhanov
Russian Federation

Dr. Sci. (Tech.), prof., Department of commerce and commodity science.

394030, Voronezh, Karl Marx str., 67A



References

1. Gogina E, Makisha N. Information technologies in view of complex solution of waste water problems. Appl. Mech. Mater. 2014. Vol. 587-589. P. 636-639.

2. Sazhiya V.V., Polkovnikov A.B., Seldias I. Problems of ecology and rational nature management in the context of russia’s economic development. Uspekhi v khimii i khimi-cheskoi tekhnologii. 2009. No. 12 (105). P. 94—108 (In Russ.).

3. Kolesnikov V.A., Ilyin V.I., Kucherov A.A. Wastewater treatment at metallurgical enterprises. Ekologiya proiz-vodstva. 2010. No. 3. P. 31—36 (In Russ.).

4. Pavlov D.V., Kolesnikov V.A. Wastewater treatment of various industries using the best available technologies. Chistaya voda: Problemy i resheniya. 2010. No. 3. P. 74—78 (In Russ.).

5. Komyagin E.A., Mynin V.N., Lyapin I.F. Ways of solving the problem of wastewater treatment from heavy and radioactive metals. Ekologiya i promyshlennost' Rossii. 2008. No. 11. P. 21—23 (In Russ.).

6. Paidar M., Fateev V, Bouzek K. Membrane electrolysis — History, current status and perspective. Electrochim. Acta. 2016. Vol. 209. P. 737—756.

7. Aliano A., Cicero G. AC Electroosmosis: Basics and lab-on-a-chip applications. In: Encyclopedia of nanotechnology, 2012. P. 25—30.

8. Yoshinobu T. Ion exchange membranes: Fundamentals and applications. Elsevier, 2015.

9. Borchmann A., Rosenwinkel K.H., Gubanov L.N., Katrae-va I.V. Einbindung der Membrantechnik in die Abwas-serreinigung mittels Anaerobtechnik. Statusseminar Membrantechnik-10. Hannover: Hannoversche Indus-trieabwasser Tagung (HIT), 2007. Heft 139.

10. Tanninen J., Manttari M., Nystrom M. Nanofiltration of concentrated acidic copper sulphate solutions. Desalination: Int. J. Sci. Technol. Water Desalt. 2008. No. 1—3. Р. 92—96.

11. Su X., Alan Hatton T. Electrosorption. In: Kirk-Othmer encyclopedia of chemical technology, 2016. P. 1—11.

12. Lazarev S.I., Kovalev S. V, Kazakov V.G. Electrobaromem-brane purification of wash water produced by 2,2’-diben-zothiazole disulfide. Vestnik TGTU. 2013. Vol. 19. No. 3. P. 614—618 (In Russ.).

13. Makushev D.Yu. Impact of sewage of the Sredneuralsk copper smelter on the Chusovaya river. Izv. UrGGU. 2003. Iss. 18. P. 291—297 (In Russ.).

14. Simone S., Figoli A., Criscuoli A., Carnevale M.C., Rosselli A., Drioli E. Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD. J. Membr. Sci. 2010. Vol. 364. P. 219—232.

15. Kovalev S.V Increase in the efficiency of an electro-barrier-type apparatus of a flat-chamber type. Khimicheskoe i neftegazovoe mashinostroenie. 2014. No. 1. P. 13—17 (In Russ.).

16. Pabby А.К., Rizvi S., Requena A. Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications. 2-nd ed. CRC Press, 2015.

17. Konturri K., Murtomaki L, Manzanares J.A. Ionic transport processes in electrochemistry and membrane science. Oxford University Press, 2008.

18. Shestakov K.V, Firpo R., Bottino A., Comite A. Preliminary study of electrodialysis with model salt solutions and industrial wastewater. In: Proc. Int. Conf. «Frontiers in Wastewater Treatment and Modelling». Palermo, 2017. P. 656—662.

19. Lazarev S.I., Abonosimov O.A., Ryabinsky M.A., Gorbachev A.S. Model for calculating the mass transfer in electro-barreled devices of a roll type. Izv. vuz,ov. Khimiya i khimicheskaya tekhnologiya. 2008. Vol. 51. Iss. 5. P. 109—111 (In Russ.).

20. Golovashin V.L. Mathematical model of joint electrothermal and heat transfer in electrobaromembrane systems. Vestnik TGTU. 2014. Vol. 20. No. 4. P. 734—746 (In Russ.).

21. Abonosimov O.A., Kuznetsov M.A., Kovaleva O.A., Poli-karpov V.M., Dmitriev V.M. Kinetic dependencies and technological efficiency of electrochemical membrane separation of wastewater at enterprises. Vestnik TGTU. 2017. Vol. 23. No. 4. P. 641—655 (In Russ.).


Review

For citations:


Abonosimov O.A., Lazarev S.I., Kotenev S.I., Selivanov I.V., Polyanskiy K.K. Efficiency of electrochemical membrane cleaning of process solutions from copper sulphate and trisodium phosphate. Izvestiya. Non-Ferrous Metallurgy. 2019;(1):75-81. (In Russ.) https://doi.org/10.17073/0021-3438-2019-1-75-81

Views: 661


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)