Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
https://doi.org/10.17073/0021-3438-2019-1-16-24
Abstract
X-ray diffraction, optical microscopy and X-ray microanalysis were used to determine the composition and distribution of elements in the main mineral constituents of oxidized nickel ore at the Sakhalin deposit (goethite, hematite, serpentine, talc and chlorite). The main fraction of nickel is concentrated in iron oxides, where its content reaches 2,4 %, while in magnesium silicates it does not exceed 0,4 %. The sequence and temperature intervals of transformations were established when heating ore in inert and reducing media by means of thermal analysis methods combined with mass-spectrometric analysis of gases and subsequent X-ray phase analysis of products. The temperature regimes of ore roasting for the reduction of nickel and iron from their minerals were justified. The temperature regimes of sample heating are assumed to be close to the conditions implemented in industrial units (electric furnaces) where the rate of charge heating varies within 5—15 degrees/min, up to the melting point (1450 °С) of ferronickel and slag. It is proposed to use information on material composition, thermal properties and metal forms in ore to select regimes and technologies for their pyro-or hydrometallurgical processing. Nickel and iron recovery from oxides in CO environment occurs above 800 °С, while serpentines remain stable up to 1200 °С. The use of coke as a reducing agent allows reducing iron and nickel from serpentines at temperatures above 1250 °С. The obtained data were used to substantiate the operating conditions of roaster and electric furnaces during ferronickel smelting from oxidized ores. When roasting, resulting ferronickel particles will contain 2—4 % Ni. Completing recovery processes in the electric furnace will ensure metal recovery from magnesium silicates, which will slightly increase the nickel content in ferro-nickel.
Keywords
About the Authors
E. N. SelivanovRussian Federation
Selivanov E.N. — Dr. Sci. (Tech.), head of Laboratory of pyrometallurgy of non-ferrous metals, IMET UB RAS.
620016, Ekaterinburg, Amundsen str., 101
S. N. Sergeeva
Russian Federation
Sergeeva S.V. — Cand. Sci. (Tech.), research scientist of Laboratory of pyrometallurgy of non-ferrous metals, IMET UB RAS.
Ekaterinburg
R. I. Gulyaeva
Russian Federation
Gulyaeva R.I. — Cand. Sci. (Chem.), senior researcher of Laboratory of pyrometallurgy of non-ferrous metals, IMET UB RAS.
EkaterinburgReferences
1. Reznik I.D., Ermakov G.L., Shneerson Ya.M. Nickel. Vol. 1. Mosww: Nauka i tekhnologii, 2001 (In Russ.).
2. Nikitin K.K., Glazkovskii A.A. Nickel-bearing crusts of weathering of ultrabasites and methods of their study. Mosww: Nedra, 1970 (In Russ.).
3. Selivanov E.N., Sergeeva S.V., Udoeva L.Yu., Pankratov A.A. Nickel distribution in the Serovskoe deposit oxide nickel ore phase contituents. Obogashchenie rud. 2011. No. 5. P. 46—50 (In Russ.).
4. Vershinin A.S., Vitkovskaya I.V, Edel’shtein I.I., Vare-nya G.D. Technological mineralogy of hypergenic nickel ores. Leningrad: Nauka, 1988 (In Russ.).
5. Talovina I.V, Lazarenkov V.G., Ryzhkova S.O., Ugol’kov V.L., Vorontsova N.I. Garnierite in nickel deposits of the Urals. Lithol. Miner. Resources. 2008. Vol. 43. P. 588—595. DOI: 10.1134/S0024490208060060.
6. Powder diffraction file (PDF), produced by the International Centre for Diffraction Data, Newtown Square, PA.
7. Lazareva S.V, Selivanov E.N., Udoeva L.Yu., Gulyaeva R.I. Thermal properties of hight-magnesium nickel ore of the Serovskoye deposit. In: Advanced metal materials and technologies: Proc. of the Intern. sci. and techn. conf. (Sankt-Peterburg, 24—26 June 2009). Sankt-Peterburg: Politechnical University, 2009. P. 177—182 (In Russ.).
8. Elliott R., Pickles C.A., Forster J. Thermodynamic of the reduction roasting of nickeliferous laterite ore. J. Miner. Mater. Charact. Eng. 2016. Vol. 4. P. 320—346. DOI: 10.4236/jmmce.2016.46028.
9. Pickles C.A., Forster J., Elliott R. Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore. Miner. Eng. 2014. Vol. 65. P. 33—40. DOI: 10.1016/j.mineng.2014.05.006.
10. Selivanov E.N., Lazareva S.V, Udoeva L.Y, Gulyaeva R.I. Structure and thermal transformations of hydrated magnesium silicates. Defect Diffus. Forum. 2011. Vol. 312—315. P. 708—712. DOI: 10.4028/www.scientific.net/DDF.312-315.708.
11. Rhamdhani M.A., Hayes P.C., Jak E. Nickel laterite. Part 1. Microstructure and phase characterisations during reduction roasting and leaching. Miner. Process. Extract. Metall. 2009. Vol. 118 (3). P. 129—145. DOI: 10.1179/174328509X431391.
12. Khoroshavin A.G. Forsterite. Moscow: Teplotekhnika, 2004 (In Russ.).
13. Ivanova V.P., Kasatov B.K., Krasavina T.N. Thermal analysis of minerals and rocks. Leningrad: Nedra, 1974 (In Russ.).
14. Bunjaku A., Kekkonen M., Taskinen P., Holappa L. Thermal behavior of hydrous nickel-magnesium silicates when heating up to 750 °C. Miner. Process. Extract. Metall. 2011. Vol. 120 (3). P. 139-146. DOI: 10.1179/1743285511Y.0000000011.
15. Chernobrovin V.P., Pashkeev I.Yu., Mikhailov G.G., Lyka-sov A.A., Senin A.V, Tolkanov O.A. Theoretical foundations of the processes of production of carbon ferrochro-mium from the Urals ores. Chelyabinsk: YuUrGU, 2004 (In Russ.).
16. Zevgolis E., Zografidis C., Halikia I. The reducibility of the Greek nickeliferous laterites: A review. Miner. Process. Extract. Metall. 2010. Vol. 119 (1). P. 9-17. DOI: 10.1179/174328509X431472.
17. Tsuji H. Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in rotary kiln for production of ferro-nickel alloy. ISIJInt. 2012. Vol. 52 (6). P. 10001009. DOI: 10.2355/isijinternational.52.1000.
18. Bo Li, Hua Wang, Yonggang Wei. The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidization method. Miner. Eng. 2011. Vol. 24. P. 15561562. DOI: 10.1016/j.mineng.2011.08.006.
19. Samouhos M., Taxiarchou M., Hutcheon R., Devlin E. Microwave reduction of a nickeliferous laterite ore. Miner. Eng. 2012. Vol. 34. P. 19-29. DOI: 10.1016/j.mineng.2015.09.005.
20. Song Chen, Shu-qiang Guo, Lan Jiang, Yu-ling Xu, Wei-zhong Ding. Thermodynamic of selective reduction of laterite ore by reducing gases. Trans. Nonfer. Met. Soc. China. 2015. Vol. 25. P. 3133-3138. DOI: 10.1016/S1003-6326(15)63943-7.
21. Utigard T, Bergman R.A. Gaseous reduction of laterite ores. Metall. Mater. Trans. B. 1992. Vol. 23. P. 271-275.
22. Yang J., Zhang G., Jahanshahi S., Ostrovski O. Reduction of a garnieritic laterite ore by CO-CO2 gas mixtures. In: Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry: 14-th Intern. Ferroalloys congr. (Kiev, Ukraine, 31 May - 4 June 2015). P. 518-527.
23. Shiwei Zhou, Yonggang Wei, Bo Li, Hua Wang, Baozhonh Ma, Chengyan Wang. Chloridization and reduction roasting of high-magnesium low-nickel oxide ore followed by magnetic separation to enrich ferronickel concentrate. Metall. Mater. Trans. B. 2016. Vol. 47. P. 145-153. DOI: 10.1007/s11663-015-0478-8.
24. Emmanuel N. Zevgolis, Charalabos Zografidis, Theodora Perraki, Eammon Devlin. Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J. Therm. Anal. Calorim. 2010. Vol. 100. P. 133-139. DOI: 10.1007/s10973-009-0198-x.
Review
For citations:
Selivanov E.N., Sergeeva S.N., Gulyaeva R.I. Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore. Izvestiya. Non-Ferrous Metallurgy. 2019;(1):16-24. (In Russ.) https://doi.org/10.17073/0021-3438-2019-1-16-24