Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

THE USE OF ALUMINUM SLAG RECYCLING PRODUCTS IN INVESTMENT CASTING TECHNOLOGIES

https://doi.org/10.17073/0021-3438-2018-6-58-71

Abstract

The studies of fractional, chemical and phase compositions of aluminum-containing slags of different origin found that slags are multi-component systems consisting of metal and non-metal parts. The non-metal part contains water-soluble and water-insoluble
components. A practical scheme for recycling aluminum-containing slags was proposed in order to isolate the water-insoluble component to be further used a secondary refractory dusting material. It was found that the secondary refractory dusting material has a positive effect on the quality of refractory ceramic molds in investment casting and the surface finish of experimental aluminum castings. This material improves the strength of refractory ceramic molds by 9 times in comparison with silica sand molds and increases gas permeability by 15 % to 33 % in comparison with fused alumina and silica sand molds, respectively. The study covers the processes used to produce refractory ceramic molds based on the secondary refractory dusting material. The mechanism of interaction between dusting material particles and suspension is theoretically justified in terms of colloid chemistry. Negatively charged aluminum
hydroxide micelles appear when ceramic mold layers are formed using the secondary refractory dusting material. Interaction between differently charged Al(OH)3 and SiO2 micelles makes secondary refractory dusting material particles come in close contact with each other. The theoretically justified processes of ceramic mold layer formation with the secondary refractory dusting material make it possible to explain the reduction in the surface roughness of castings made of AK9ch aluminum casting alloy using investment casting by 3.7 times compared with standard production processes.

About the Authors

K. V. Nikitin
Samara State Technical University (SSTU) .
Russian Federation

Dr. Sci. (Eng.), Associate prof., Dean of the Faculty of mechanical engineering, metallurgy and transport. 
443100, Russia, Samara, Molodogvardeyskaya str., 244.



A. V. Sokolov
Samara State Technical University (SSTU) .
Russian Federation

Cand. Sci. (Tech.), Assistant of the Department of foundry and high-efficiency technologies.

443100, Russia, Samara, Molodogvardeyskaya str., 244.



V. I. Nikitin
Samara State Technical University (SSTU) .
Russian Federation

Dr. Sci. (Eng.), Prof., Head of the Department of foundry and high-efficiency technologies.

443100, Russia, Samara, Molodogvardeyskaya str., 244.



N. V. D’yachkov
Samara State Technical University (SSTU) .
Russian Federation

Cand. Sci. (Tech.), Associate prof. of the Department of foundry and high-efficiency technologies.

443100, Russia, Samara, Molodogvardeyskaya str., 244.



References

1. Gaustad G., Olivetti E., Kirchain R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation and Recycling. 2012. No. 58. Р. 79—87.

2. Tsakiridis P.E. Aluminium salt slag characterization and utilization — А review. J. Hazard. Mater. 2012. Vol. 217-218. P. 1—10.

3. Makarov G.S. Perspective of recycling of aluminium in Russia. Tekhnologiya legkikh splavov. 2007. No. 2. Р. 81—87 (In Russ.).

4. Peterson R.D., Newton L. Review of aluminum dross processing. Light Metals: Proceedings of Sessions, TMS Annual Meeting. 2002. Р. 1029—1037.

5. Gel V.I., Rudakov D.N. Development of aluminium scrap melting technology. Non-Ferr. Met. 2013. No. 2. Р. 35—39.

6. Thoraval M., Friedrich B. Metal entrapment in slag during the aluminium recycling process in tilting rotary furnace. In: Proc. EMC: Eur. Metal. Conf. (Düsseldorf, Germany, 14—17 June 2015). Clausthal-Zellerfeld, 2015. P. 1—10.

7. Calder G.V., Stark T.D. Aluminum reactions and problems in municipal solid waste landfills. J. Hazardous, Toxic and Radioactive Waste. 2010. No. 14. P. 258—265. 8. Selyanin I.F., Deev V.B., Kukharenko A.V. Resourcesaving and environment-saving production technologies of secondary aluminum alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. Iss. 3. P. 272—276.

8. Lysenko A.P., Puzanov D.S. Challenges and prospects of processing the oxide and salt waste secondary metallurgy of aluminium. Vestnik MGOU. 2011. No. 3. Р. 10—14 (In Russ.).

9. Ghorab H., Rizk M., Matter A., Salama A.A. Characterization and recycling of aluminum slag. Polymer-Plast. Technol. Eng. 2004. Vol. 43. P. 1663—1673.

10. Huang X.-L., El Badawy A., Arambewela M., Ford R., Barlaz M., Tolaymat T. Characterization of salt cake from secondary aluminum production. J. Hazard. Mater. 2014. Vol. 273. P. 192—199.

11. López-Delgado A., Tayibi H., Pérez C., José F., Félix A., López A. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses. J. Hazard. Mater. 2009. Vol. 16. P. 180—186.

12. Galindo R., Padilla I., Rodríguez O., Sánchez-Hernán-dez R., López-Andrés S., López-Delgado A. Characterization of solid wastes from aluminum tertiary sector: The current state of spanish industry. J. Miner. Mater. Charact. Eng. 2015. Vol. 3 No. 2. P. 55—64.

13. Bajare D., Korjakins A., Zakutajevs M., Voroneko F. Applying of aluminium scrap recycling waste (non-metal product, NMP) for production environmental friendly building materials. In: Modern building materials, structures and techniques: Proc. 10th Intern. Conf. (Vilnius, Lathuania, 19—21 May 2010). Vilnius: Vilnius Gediminas Technical University, 2013. P. 13—17.

14. Yuvaraj Mr.T., Palanivel Dr.M., Vigneswar S., Bhoopathy R., Gnanasekaran V. Environmental feasibility in utilization of foundry solid waste (slag) for M20 concrete mix proportions. J. Environmental Sci., Toxicol. Food Technol. 2015. Vol. 9. No. 1. P. 16—23.

15. Andrews A., Gikunoo E., Ofosu-Mensah L., Tofah H., Bansah S. Chemical and mineralogical characterization of ghanaian foundry slags. J. Miner. Mater. Charact. Eng. 2012. Vol. 11. No. 2. P. 183—192.

16. Reuter M., Xiao Y., Boin U. Recycling and environmental issues of metallurgical slags and salt fluxes. In: Proc. VII Inter. Conf. on Molten Slags Fluxes and Salts (Cape Town, South Africa, 25—28 January 2004). The South African Institute of Mining and Metallurgy, 2004. P. 349—356.

17. Podbolotov K.B. Refractory Porous materials based on secondary resources and phosphate compounds. Refract. Industr. Ceram. 2017. Vol. 57. No. 5. P. 484—489.

18. Lucheva B., Tsonev Ts., Petkov R. Non-waste aluminum dross recycling. J. University of Chemical Technology and Metallurgy. 2005. Vol. 40. No. 4. P. 335—338.

19. Li P., Zhang M., Teng L., Seetharaman S. Recycling of aluminum salt cake: Utilization of evolved ammonia. Metal. Mater. Trans. B. 2013. Vol. 44. No. 1. Р. 16—19.

20. Narasimha Murthy, J. Babu Rao. Granulated blast furnace slag: Potential sustainable material for foundry applications. J. Sustain. Metal. 2017. Vol. 3. No. 3. P. 495—514.

21. Ryazanov S.A. On complex processing of aluminum dross. Liteishchik Rossii. 2010. No. 7. Р. 43—45 (In Russ.).

22. Beńo J., Adámková E., Mikśovský F., Jelínek P. Development of composite salt cores for foundry applications. Mater. Technol. 2015. Vol. 49. No. 4. P. 619—623.

23. Ajler R. Chemistry of silica. Pt. 1. Moscow: Mir, 1982 (In Russ.).

24. Ajler R. Chemistry of silica. Pt. 2. Moscow: Mir, 1982 (In Russ.).

25. Fridrihsberg D.A. Course of colloid chemistry. SPb: Khimiya, 1995 (In Russ.).

26. Brykov A.S. Chemistry of silicate and silica-containing binders: Тextbook. SPb: SPbGTI (TU), 2011 (In Russ.).

27. Chukin G.D. Surface chemistry and structure of dispersed silica. Moscow: Tipografiya Paladin, LLC «Printa», 2008 (In Russ.).


Review

For citations:


Nikitin K.V., Sokolov A.V., Nikitin V.I., D’yachkov N.V. THE USE OF ALUMINUM SLAG RECYCLING PRODUCTS IN INVESTMENT CASTING TECHNOLOGIES. Izvestiya. Non-Ferrous Metallurgy. 2018;(6):58-71. (In Russ.) https://doi.org/10.17073/0021-3438-2018-6-58-71

Views: 764


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)