Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

FEM SIMULATION OF MANNESMANN PIERCING OF ALUMINUM ALLOY INGOTS

https://doi.org/10.17073/0021-3438-2018-6-42-50

Abstract

Mannesmann piercing of ingots, which were made of aluminum alloy by casting, was done using plugs of different shape: entire plug, plug with cavity and hollow plug. Plugs had same diameter of calibrating segment. Piercing was carried out at 400 °C ofbillets. Influence of plugs’ shape on variation of hollow shells’ diameter, wall thickness and density along their length was estimated. Hollow shells were cut into 15 equal rings to measure density using hydrostatic (Archimedean) weighing. Experimental operations were simulated using FEM computer software. Casting was simulated using ProCAST, piercing — using QForm. Variation of hollow shells’ diameter, wall thickness and density along their length was estimated after simulation had been done. Experimental and simulation data were compared to check FEM simulation accuracy. Difference between experiment and simulation for density was not more than 2 %, for hollow shells’ dimensions — 20 %. Conducted investigation allowed estimation of how plug’s shape affects hollow shells’ dimensions accuracy and density. It was established that hollow plug or plug with cavity, in terms of dimensions accuracy and density variation, are preferable for piercing. Each of plugs being used, provides manufacturing of hollow shells with maximum density for all volume except close to hollow shell’s edges domains, where density is 1 % less than maximum value.

About the Authors

M. M. Skripalenko
National University of Science and Technology (NUST) «MISIS».
Russian Federation

Cand. Sci. (Tech.), Associate prof., Department of metal forming (MF).

119049, Russia, Moscow, Leninskii pr., 4. 



B. A. Romantsev
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Dr. Sci. (Tech.), Prof., Department of MF.


V. E. Bazhenov
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of foundry technologies and material art working.


B. H. Tran
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Tran B.H. — Postgraduate student, Department of MF.


M. N. Skripalenko
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of MF.


S. P. Galkin
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Dr. Sci. (Tech.), Prof., Department of MF.


M. B. Savonkin
Национальный исследовательский технологический университет «МИСиС».
Russian Federation
Senior teacher, Department of MF.


Yu. A. Gladkov
LLC «QuantorForm».
Russian Federation

Cand. Sci. (Tech.), Head of Sales and maintenance department, 

115088, Russia, Moscow, 2-nd Yuzhnoportoviy pr., 16, buil. 2.


References

1. Erman E. The effect of processing parameters on the propensity for central fracturing in piercing. J. Appl. Metalwork. 1987. Vol. 4. No. 4. P. 331-341.

2. Galkin S.P. Radial shear rolling as an optimal technology for lean production. Steel Trans. 2014. Vol. 44. No. 1. P 61-64.

3. Korol’А.V, Vydrin А.V, Shirokov V.V. Computer modeling of piercing in a screw mill with barrel-rolling rolls. Vestnik Yuzhno-Ural’skogo gos. univer. Ser. Metallurgiya. 2015. Vol. 15. No. 2. P 68-74 (In Russ.).

4. Joun M., Lee J., Cho J., Jeong S., Moon H. Quantitative study on Mannesmann effect in roll piercing of hollow shaft. Proc. Eng. 2014. Vol. 81. P 197-202.

5. Lu L., Wang Z., Wang F., Zhu G., Zhang X. Simulation of tube forming process in Mannesmann mill. J. Shanghai Jiaotong Univer. (Science). 2011. Vol. 16. No. 3. P. 281-285.

6. Pater Z., Kazanecki J. Complex numerical analysis of the tube forming process using Diescher mill. Archives Metall. Mater. 2013. Vol. 58. No. 3. P 717-724.

7. Berazategui D. A., Cavaliere M. A., Montelatici L., Dvorkin E.N. On the modelling of complex 3D bulk metal forming processes via the pseudo-concentrations technique. Application to the simulation of the Mannesmann pie¬rcing process. Int. J. Numer. Methods Eng. 2006. Vol. 65. No. 7. P. 1113-1144.

8. Yoshida M, Barlat F, Moon Y.H, Lee M.G. 3D FEM simulation of rolling load working on piercer plug in mannesmann piercing process. AIP Conf. Proc. Vol. 1252. No. 1. P. 1333-1338.

9. Nikulin A.N. Screw rolling. Stress and strain. Moscow: Me tallurgizdat, 2015 (In Russ.).

10. Jaouen O., Costes F., Lasne P. A new 3D simulation mo¬del for complete chaining casted and forged ingot. In: Proc. 1-st Int. Conf. on Ingot Casting, Rolling and Forging. Germany, Aachen: Stahleisen GmBh, 2012. P. 1-9.

11. De Micheli P., Settefrati A., Marie S., Barlier J., Lasne P. Towards the simulation of the whole manufacturing chain processes with FORGE®. In: Proc. Int. Conf. on New Deve-lopment in Forging Technology. Germany, Stuttgart: In- ventum GmbH, 2015. P. 1-25.

12. Skripalenko M.M., Bazhenov V.E., Romantsev B.A., Skri- palenko M.N., Koltygin A.V, Sidorov A.A. Computer mo¬deling of chain processes in the manufacture of me¬tallurgical products. Metallurgist. 2014. Vol. 58. No. 1-2. P. 86-90.

13. Abdullin A.D., Ershov A.A. End-to-end simulation of casting and metal-forming operations with ProCAST and QForm software. Metallurgist. 2014. Vol. 58. No. 5-6. P. 339-345.

14. Skripalenko M.M., Bazhenov V.E., Romantsev B.A., Skri¬palenko M.N., Huy T.B., Gladkov Y.A. Mannesmann piercing of ingots by plugs of different shapes. Mater. Sci. Technol. 2016. Vol. 32. P 1712-1720.

15. Bazhenov V.E., Koltygin А.К, Tselovalnik Yu.V, Sanni- kov A.V Determination of interface heat transfer coef¬ficient between aluminum casting and graphite mold. Russ. J. Non-Ferr. Met. 2017. Vol. 58. No. 2. P. 114-123.

16. Bazhenov V.E., Koltygin A.V, Tselovalnik Yu.V. Determi¬nation of the heat-transfer coefficient between the AK7ch (A356) alloy casting and no-bake mold. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 7. P. 686-694.

17. « QForm software home page. URL: http://qform3d.ru (accessed: 13. 11. 2017) (In Russ.).

18. Modelling of the Mannesmann effect in tube piercing - Padua@Research [Padova Digital Univesirty Archive]. URL: http://paduaresearch.cab.unipd.it/1552/ (Accessed: 17.11.2017).

19. Lemaitre J., Desmorat R. Engineering damage mechanics. Berlin: Springer, 2005.

20. Lemaitre J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. Vol. 107. No. 1. 1985. P.83-89.

21. Chiluveru S. Computational modeling of crack initiation in crossroll piercing: PhD thesis. Massachusetts: Massachusetts Institute of Technology, 2007.

22. Karpov B.V, Skripalenko M.M., Galkin S.P., Skripalen¬ko M.N., Samusev S.V, Huy T.B., Pavlov S.A. Studying the nonstationary stages of screw rolling of billets with profiled ends. Metallurgist. 2017. Vol. 61. No. 3-4. P. 257-264.


Review

For citations:


Skripalenko M.M., Romantsev B.A., Bazhenov V.E., Tran B.H., Skripalenko M.N., Galkin S.P., Savonkin M.B., Gladkov Yu.A. FEM SIMULATION OF MANNESMANN PIERCING OF ALUMINUM ALLOY INGOTS. Izvestiya. Non-Ferrous Metallurgy. 2018;(6):42-50. (In Russ.) https://doi.org/10.17073/0021-3438-2018-6-42-50

Views: 818


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)