Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

SB-PB-AG ALLOY PROCESSING BY VACUUM DISTILLATION

https://doi.org/10.17073/0021-3438-2018-6-20-30

Abstract

The paper relevance is determined by the need to create an environmentally safe, high-performance and cost-efficient integrated vacuum distillation technology for the processing of lead-containing middling products and wastes, in particular, a Sb-Pb-Ag (SPA) alloy resulting from the recovery of silicate slag from copper anode slime melting to obtain sellable mono-element concentrates of an­timony, lead and silver. Laboratory studies were carried out on SPA alloy processing with the calculations of «T—x» temperature-com­position VLE (vapor liquid equilibrium) diagrams to analyze the behavior of Sb-Pb and Pb-Ag binary alloys during processing, select preliminary system temperature and pressure, and assess component separation efficiency in the following conditions: T = = 900+2100 K, P = 1+133 Pa, т = 8+16 hours. The aim of the study was to investigate the effect of temperature and pressure in the system, the duration of sublimation on the completeness of extraction and the degree of antimony, lead and silver separation from the SPA composition. Activity coefficients of binary alloy components when constructing VLE diagrams were calculated using the MI- VM (molecular interaction volume model). The information is obtained regarding the effect of temperature and vacuum level on the
degree of sublimation and separation of metals from Sb—Pb and Pb—Ag compositions of different contents. Saturated vapor pressures were calculated for Sb (p* = 273.664+ 67436.9 Pa), Pb (0.149+485.9), Ag (5.05440-5-6.558) at T = 1073+1773 K. It was demonstrat­ed that the high values of the pSb /PPb = 1832.98+138.79, ррь /pAg = 2948.16+74.09 ratio and lgPsb = 2.099+3.33 and lgPpb = 1.813+ +3.944 separation factor create theoretical prerequisites for a selective isolation of these metals by vacuum distillation, when anti­mony and lead are successively enriched in the gas phase (Ps^ > 1, Ppb > 1), and silver — in the liquid phase. The molar fraction of hard-to-sublimate lead/silver in the gaseous phase урЬ /уAg = (1.55+982)T0-3/(36+772)T0-3 is increased with rising temperature 894+1601/1399+2099 K, pressure 1.33+133 Pa and metal content in the alloy xPb /xAg = 0.9+0.9999/0.9+0.99. The MIVM model was used to calculate the activity factors of antimony Ysb = 0.832+0.999, lead ypb = 0.474+1.0, YAg = 0.331+0.999 for Sb/Pb and Pb/Ag al­loys with the following composition 0.1+0.9/0.9+0.1 in the investigated temperature range. The found dependences of the amount and composition of polymetallic alloy sublimation products on the process parameters are important for practical application due to the development of a principal technology for SPA processing by vacuum distillation.

About the Authors

A. A. Korolev
JSC «Uralelectromed».
Russian Federation

Main engineer.

624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskij av., 1.



G. I. Maltsev
JSC «Uralelectromed».
Russian Federation

Dr. Sci. (Eng.), Senior scientific officer, Chief specialist, Research Center. 

624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskij av., 1.



K. L. Timofeev
JSC «Uralelectromed».
Russian Federation

Cand. Sci. (Eng.), Chief, Research Center. 

624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskij av., 1.



V. G. Lobanov
JSC «Uralelectromed».
Russian Federation

Cand. Sci. (Eng.), Leading specialist, Research Center .

624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspenskij av., 1.



References

1. Berman A. Total pressure measurements in vacuum tech-nology. 1-st ed. N.Y.: Academic Press, 1985.

2. Winkler O., Bakish R. Vacuum metallurgy. Amsterdam: Elsevier Sci. Ltd., 1971.

3. Jia G.-b., Yang B., Liu D.-c. Deeply removing lead from Pb-Sn alloy with vacuum distillation. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. Iss. 6. P. 1822—1831.

4. Wang A., Li Y., Yang B., Xu B., Kong L., Liu D. Process optimization for vacuum distillation of Sn—Sb alloy by response surface methodology. Vacuum. 2014. Vol. 109. P. 127—134.

5. Dai Y.N. Vacuum metallurgy of nonferrous metals. Beijing: Metallurgical Industry Press, 2009.

6. YangB., KongL.-x., Xu B.-q., Liu D.-c., Dai Y.-N. Recycling of metals from waste Sn-based alloys by vacuum separa¬tion. Trans. Nonferr. Met. Soc. China. 2015. Vol. 25. Iss. 4. P. 1315—1324.

7. Liu D.C., Yang B., Wang F, Yu Q.C., Wang L., Dai Y.N. Re-search on the removal of impurities from crude nickel by vacuum distillation. Phys.Proc. 2012. Vol. 32. P. 363—371.

8. Dai Y.N., Yang B. Non-ferrous metals and vacuum metal¬lurgy. Beijing: Metallurgical Industry Press, 2000.

9. Smith J.M., Van Ness H.C., Abbott M.M. Introduction to chemical engineering thermodynamics. N.Y.: McGraw- Hill, 2001.

10. Tao D.P. A new model of thermodynamics of liquid mix¬tures and its application to liquid alloys. Thermochim. Acta. 2000. Vol. 363. Iss. 1-2. P. 105—113.

11. Poizeau S., Kim H.J., Newhouse J.M., Spatocco B.L., Sado- way D.R. Determination and modeling of the thermodynamic properties of liquid calcium—antimony alloys. Electrochim. Acta. 2012. Vol. 76. P. 8—15.

12. Newhouse J.M., Poizeau S., Kim H., Spatocco B.L., Sado- way D.R. Thermodynamic properties of calcium—mag¬nesium alloys determined by emf measurements. Electro- chim. Acta. 2013. Vol. 91. P. 293—301.

13. Miyazaki N., Adachi N., Todaka Y., Miyazaki H., Nishi- no Y. Thermoelectric property of bulk CaMgSi inter¬metallic compound. J. Alloys and Compd. 2017. Vol. 691. P. 914-918.

14. Gerold V. Materials science and technology: A compre¬hensive treatment. Vol. 1. Structure of solids. Weinheim: VCH, 1993.

15. Hultgren R, Desai P.D., Hawkins D.T, Geiser M, Ke¬lley K.K. Selected values of the thermodynamic properties of binary alloys. Metals Park. Ohio: Amer. Soc. for Me¬tals, 1973.

16. Kong X., Yang B., Xiong H, Kong L, Xu B. Thermodyna¬mics of removing impurities from crude lead by vacuum distillation refining. Trans. Nonferr. Met. Soc. China. 2014. Vol. 24. Iss. 6. P. 1946-1950.

17. YangH.W, YangB., XuB.Q., LiuD.C., TaoD.P. Application of molecular interaction volume model in vacuum distil¬lation of Pb-based alloys. Vacuum. 2012. Vol. 86. Iss. 9. P. 1296-1299.

18. Korolev A.A., Krajuhin S.A., Mal’cev G.I. Equilibrium «gas-liquid» systems for the Pb-Sb alloy under vacuum distillation. Vestnik PNIPU. Mashinostroenie, materialove- denie. 2017. No. 3. P. 75-99 (In Russ.).

19. Korolev A.A., Krajuhin S.A., Mal’cev G.I. Phase equilibria in the Pb-Ag system in pyrometallurgical distillation. Vestnik YuUrGU. Metallurgiya. 2017. No. 2. P. 22-33 (In Russ.).

20. Zhao J.Y., Yang H.W, Nan C.B., Yang B, Liu D.C., Xu B.-q. Kinetics of Pb evaporation from Pb-Sn liquid alloy in vacuum distillation. Vacuum. 2017. Vol. 141. P. 10-14.

21. Kong L.-x., Xu J., Xu B.-q, Xu S., Yang B. Vapor-liquid phase equilibria of binary tin—antimony system in va¬cuum distillation: experimental investigation and cal¬culation. Fluid Phase Equilibria. 2016. Vol. 415. P. 176¬183.

22. Nan C.B., Yang H.W, Yang B., Liu D., Xiong H. Experimen¬tal and modeling vapor-liquid equilibria: separation of Bi from Sn by vacuum distillation. Vacuum. 2017. Vol. 135. P. 109-114.

23. Song B., Xu N., Jiang W, Yang B., Chen X., Xu B., Kong L., Liu D., Dai Y. Study on azeotropic point of Pb-Sb alloys by abinitio molecular dynamic simulation and vacuum distillation. Vacuum. 2016. Vol. 125. P. 209-214.

24. Zhang C., Jiang W.L., Yang B., Liu D.C., Xu B.Q., Yang H.W. Experimental investigation and calculation of vapor- liquid equilibria for Cu-Pb binary alloy in vacuum dis¬tillation. Fluid Phase Equilibria. 2015. Vol. 405. P. 68-72.

25. Lyakishev N.P. Phase diagrams of binary metallic systems. Moscow: Mashinostroenie, 1996 (In Russ.).


Review

For citations:


Korolev A.A., Maltsev G.I., Timofeev K.L., Lobanov V.G. SB-PB-AG ALLOY PROCESSING BY VACUUM DISTILLATION. Izvestiya. Non-Ferrous Metallurgy. 2018;(6):20-30. (In Russ.) https://doi.org/10.17073/0021-3438-2018-6-20-30

Views: 678


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)