ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА ЭФФЕКТИВНОСТЬ ЭЛЕКТРОЛИЗА ЦИНКА ИЗ ЩЕЛОЧНЫХ РАСТВОРОВ
https://doi.org/10.17073/0021-3438-2018-6-12-19
Аннотация
Ключевые слова
Об авторах
С. В. МамяченковРоссия
докт. техн. наук, профессор, зав. кафедрой металлургии цветных металлов.
620002, г. Екатеринбург, ул. Мира, 17, оф. С-108.
С. А. Якорнов
Россия
канд. техн. наук, зам. тех. директора по металлургии.
624091, Свердловская обл., г. Верхняя Пышма, Успенский пр-т, 1.
О. С. Анисимова
Россия
Анисимова О.С. – канд. техн. наук, доцент кафедры МЦМ.
620002, г. Екатеринбург, ул. Мира, 17, оф. С-108.
П. А. Козлов
Россия
докт. техн. наук, зам. директора по науке.
624091, Свердловская обл., г. Верхняя Пышма, Успенский пр-т, 3.
Д. А. Ивакин
Россия
канд. техн. наук, зав. лабораторией Инженерного центра ПАО «ЧЦЗ».
454008, г. Челябинск, Свердловский тракт, 24.
Список литературы
1. Orhan G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydro¬metallurgy. 2005. Vol. 78. P. 236—245.
2. Chairaksa-Fujimoto R., Maruyama K, Mikia T, Nagasa- ka T. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy. 2016. Vol. 159. P. 120—125.
3. Dutra A.J.B., Paiva P.R.P., Tavares L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng.2006. Vol. 19. P. 478—485.
4. Youcai Z., Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard. Mater. 2000. Vol. 80. P. 223—240.
5. Frenay J., Ferlay S., Hissel J. Zinc and lead recovery from EAF dusts by caustic soda process electric furnace pro¬ceedings, treatment options for carbon steel electric arc furnace dust. Iron Steel Soc. 1986. Vol. 43. P. 417—421.
6. Chen A.L., Zhao Z. W, Jia X.J., Long S., Huo G.S., Chen X.Y. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy. 2009. Vol. 97. P. 228—232.
7. Feng L.Y, Yang X.W. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores. Hydrometallurgy.2007. Vol. 89. P. 305—310.
8. Gurmen S., Emre M. A laboratory-scale investigation of alkaline zinc electrowinning. Miner. Eng. 2003. Vol. 16. P. 559—562.
9. Zhang Y., Deng J., Chen J., Yua R., Xing X. The electrow¬inning of zinc from sodium hydroxide solutions. Hydro¬metallurgy. 2014. Vol. 146. P. 59—63.
10. St-Pierre J., Piron D.L. Elecrowinning of zinc from alka¬line solutions. J. Appl. Electrochem. 1986. Vol. 16. P. 447— 456.
11. Qiang L., Youcai Z., Jiachao J., Chenglong Z. Optimized hydrometallurgical route to produce ultrafine zinc pow¬der from industrial wastes in alkaline medium. Proc. En¬viron. Sci. 2012. Vol. 16. P. 674—682.
12. Piron D.L., Sider M. Comparison of energy-consumption in improved sulfate process and alternative technologies for zinc electrowinning. CIM Bull. 1988. Vol. 81. Iss. 914. P. 131—132.
13. Eacott J.G., Robinson M.C. Busse E. Techno-econom¬ic feasibility of zinc and lead recovery from electric-arc furnace baghouse dust. CIM Bull. 1984. Vol. 77. Iss. 866. P. 41—41.
14. Muresan L., Maurin G., Oniciu L., Gaga D. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy. 1996. Vol. 43. P. 345 —354.
15. Kahanda G., Tomkiewicz M. Morphological evolution in zinc electrodeposition. J. Electrochem. Soc. 1989. Vol. 136. No. 5. P. 1497—1502.
16. Chen C.P., Jorn J. Fractal analysis of zinc electrode¬position. J. Electrochem. Soc. 1990. Vol. 137. No. 7. P. 2047—2051.
17. Sharifi B., Mojtahedi M., Goodarzi M., Vahdati J.K. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder. Hydrometallurgy. 2009. Vol. 99. P. 72—76.
18. Diggle J.W. Crystallographic and morphological studies of electrolytic zinc dendrites grown from alkaline zincate solutions. J. Mater. Sci. 1973. Vol. 8 (1). Р. 79—87.
19. Chandrasekar M.S., Shanmugasigamani P. Synergetic effects of pulse constraints and additives in electrodep¬osition of nanocrystalline zinc: Corrosion, structural and textural characterization. Mater. Chem. Phys. 2010. Vol. 124. P. 516—528.
20. St-Pierre J., Piron D.L. Elecrowinning of zinc from alka¬line solutions at high current densities. J. Appl. Electro¬chem. 1990. Vol. 20. P. 163—165.
21. Arouete S., Blurton K.F., Oswin H.G. Controlled current deposition of zinc from alkaline solution. J. Electrochem. Soc. 1969. Vol. 116. P. 166—169.
22. Sharifi B., Mojtahedi M., Goodarzi M., Vahdati Khaki J. Effect of alkaline electrolysis conditions on current effi¬ciency and morphology of zinc powder. Hydrometallurgy. 2009. Vol. 99. P. 72—76.
23. Despic A.R., Popov K.I. The effect of pulsating potential on the morphology of metal deposits obtained by mass-trans¬port controlled electrodeposition. J. Appl. Electrochem. 1971. No. 1. P. 275—278.
24. Banik S.J., Rohan A. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta. 2015. Vol. 179. P. 475—481.
25. Popov K.I., Maksimovic M.D., Trnjancev J.D. Dendritic electrocrystallization and the mechanism of powder for¬mation in the potentiostatic electrodeposition of metals. J. Appl. Electrochem. 1981. Vol. 11. P. 239—246.
26. Divyaraj Desai, Xia Wei, Daniel A. Steingart, Sanjoy Ba- nerjee. Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries. J. Power Sources. 2014. Vol. 256. P. 145—152.
Рецензия
Для цитирования:
Мамяченков С.В., Якорнов С.А., Анисимова О.С., Козлов П.А., Ивакин Д.А. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА ЭФФЕКТИВНОСТЬ ЭЛЕКТРОЛИЗА ЦИНКА ИЗ ЩЕЛОЧНЫХ РАСТВОРОВ. Известия вузов. Цветная металлургия. 2018;(6):12-19. https://doi.org/10.17073/0021-3438-2018-6-12-19
For citation:
Mamyachenkov S.V., Yakornov S.A., Anisimova O.S., Kozlov P.A., Ivakin D.A. RESEARCH OF THE INFLUENCE OF TECHNOLOGICAL PARAMETERS ON EFFICIENCY OF ZINC ELECTROLYSIS FROM ALKALINE SOLUTIONS. Izvestiya. Non-Ferrous Metallurgy. 2018;(6):12-19. (In Russ.) https://doi.org/10.17073/0021-3438-2018-6-12-19