Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

RESEARCH OF THE INFLUENCE OF TECHNOLOGICAL PARAMETERS ON EFFICIENCY OF ZINC ELECTROLYSIS FROM ALKALINE SOLUTIONS

https://doi.org/10.17073/0021-3438-2018-6-12-19

Abstract

The effect that the main parameters of zinc electrolysis from an alkaline zincate solution have on current efficiency and power con­sumption was studied in laboratory conditions. Zinc concentration (initial and final), current density and temperature were chosen as variable parameters. The study used both model electrolytes (prepared using standard reagents) and real ones produced by leaching the calcined middling product obtained when processing zinc-bearing dusts of ferrous metallurgy. It was shown that the current efficiency of zinc can be quite high (more than 90 %) even at an initial zinc concentration in the alkaline electrolyte of 10 g/dm3. However, this requires low current loads (100—400 A/m2) that are impractical in industrial electrolysis used to produce powdered metal, since the actual current density decreases as the cathode deposit surface develops and may fall below the limiting diffusion current of complex ions. In this case, the growth of enlarged dendrites is expected with the formation of «short-circuited» sections in the interelectrode space, which as a whole will reduce the zinc current efficiency. Larger-scale laboratory studies focused on zinc electrolysis from a real zincate solution made it possible to determine the most energy-efficient (with the highest zinc current efficiency and the lowest power consumption) process parameters: current density — 1000—2000 A/m2; electrolyte temperature — 50—80 °С; initial zinc concentra­tion — 20—50 g/dm3; residual zinc concentration — not less than 15 g/dm3. These conditions will ensure high current efficiency (85 — 95 %) and electric power consumption (2,28—3,20 kW-h/kgZn). For the «depleted» zincate solution with a zinc content of 10 g/dm3, the highest current efficiency (more than 90 %) is achieved at a current density of 125 A/m2, close to the diffusion current density j = = 95,7 A/m2. With j > 500 A/m2, the current efficiency is significantly lower due to the intensive hydrogen release. A qualitative evalu­ation of the resulting cathode deposit was made (by the visible dimensions of crystals) in studies on an enlarged electrolytic cell.

About the Authors

S. V. Mamyachenkov
Ural Federal University (UrFU).
Russian Federation

Dr. Sci. (Tech.), Prof., Department of metallurgy of non-ferrous metals.

620002, Russia, Ekaterinburg, Mira str., 17, off. С-108.



S. A. Yakornov
LLC «UMMC-Holding».
Russian Federation

Cand. Sci. (Tech.), Deputy technical director for metallurgy.

(624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspensky ave., 1.


O. S. Anisimova
Ural Federal University (UrFU).
Russian Federation

Cand. Sci. (Tech.), Docent, Department of metallurgy of non-ferrous metals.

620002, Russia, Ekaterinburg, Mira str., 17, off. С-108.



P. A. Kozlov
TU «UMMC» .
Russian Federation

Dr. Sci. (Tech.), Deputy director.

624091, Russia, Sverdlovsk reg., Verkhnyaya Pyshma, Uspensky ave., 3.



D. A. Ivakin
Engineering Center of PJSC «CZP».
Russian Federation

Ivakin D.A. — Cand. Sci. (Tech.), Head of Laboratory.

(454008, Russia, Chelyabinsk, Sverdlovsk tract, 24.


References

1. Orhan G. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydro¬metallurgy. 2005. Vol. 78. P. 236—245.

2. Chairaksa-Fujimoto R., Maruyama K, Mikia T, Nagasa- ka T. The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy. 2016. Vol. 159. P. 120—125.

3. Dutra A.J.B., Paiva P.R.P., Tavares L.M. Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng.2006. Vol. 19. P. 478—485.

4. Youcai Z., Stanforth R. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J. Hazard. Mater. 2000. Vol. 80. P. 223—240.

5. Frenay J., Ferlay S., Hissel J. Zinc and lead recovery from EAF dusts by caustic soda process electric furnace pro¬ceedings, treatment options for carbon steel electric arc furnace dust. Iron Steel Soc. 1986. Vol. 43. P. 417—421.

6. Chen A.L., Zhao Z. W, Jia X.J., Long S., Huo G.S., Chen X.Y. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy. 2009. Vol. 97. P. 228—232.

7. Feng L.Y, Yang X.W. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores. Hydrometallurgy.2007. Vol. 89. P. 305—310.

8. Gurmen S., Emre M. A laboratory-scale investigation of alkaline zinc electrowinning. Miner. Eng. 2003. Vol. 16. P. 559—562.

9. Zhang Y., Deng J., Chen J., Yua R., Xing X. The electrow¬inning of zinc from sodium hydroxide solutions. Hydro¬metallurgy. 2014. Vol. 146. P. 59—63.

10. St-Pierre J., Piron D.L. Elecrowinning of zinc from alka¬line solutions. J. Appl. Electrochem. 1986. Vol. 16. P. 447— 456.

11. Qiang L., Youcai Z., Jiachao J., Chenglong Z. Optimized hydrometallurgical route to produce ultrafine zinc pow¬der from industrial wastes in alkaline medium. Proc. En¬viron. Sci. 2012. Vol. 16. P. 674—682.

12. Piron D.L., Sider M. Comparison of energy-consumption in improved sulfate process and alternative technologies for zinc electrowinning. CIM Bull. 1988. Vol. 81. Iss. 914. P. 131—132.

13. Eacott J.G., Robinson M.C. Busse E. Techno-econom¬ic feasibility of zinc and lead recovery from electric-arc furnace baghouse dust. CIM Bull. 1984. Vol. 77. Iss. 866. P. 41—41.

14. Muresan L., Maurin G., Oniciu L., Gaga D. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy. 1996. Vol. 43. P. 345 —354.

15. Kahanda G., Tomkiewicz M. Morphological evolution in zinc electrodeposition. J. Electrochem. Soc. 1989. Vol. 136. No. 5. P. 1497—1502.

16. Chen C.P., Jorn J. Fractal analysis of zinc electrode¬position. J. Electrochem. Soc. 1990. Vol. 137. No. 7. P. 2047—2051.

17. Sharifi B., Mojtahedi M., Goodarzi M., Vahdati J.K. Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder. Hydrometallurgy. 2009. Vol. 99. P. 72—76.

18. Diggle J.W. Crystallographic and morphological studies of electrolytic zinc dendrites grown from alkaline zincate solutions. J. Mater. Sci. 1973. Vol. 8 (1). Р. 79—87.

19. Chandrasekar M.S., Shanmugasigamani P. Synergetic effects of pulse constraints and additives in electrodep¬osition of nanocrystalline zinc: Corrosion, structural and textural characterization. Mater. Chem. Phys. 2010. Vol. 124. P. 516—528.

20. St-Pierre J., Piron D.L. Elecrowinning of zinc from alka¬line solutions at high current densities. J. Appl. Electro¬chem. 1990. Vol. 20. P. 163—165.

21. Arouete S., Blurton K.F., Oswin H.G. Controlled current deposition of zinc from alkaline solution. J. Electrochem. Soc. 1969. Vol. 116. P. 166—169.

22. Sharifi B., Mojtahedi M., Goodarzi M., Vahdati Khaki J. Effect of alkaline electrolysis conditions on current effi¬ciency and morphology of zinc powder. Hydrometallurgy. 2009. Vol. 99. P. 72—76.

23. Despic A.R., Popov K.I. The effect of pulsating potential on the morphology of metal deposits obtained by mass-trans¬port controlled electrodeposition. J. Appl. Electrochem. 1971. No. 1. P. 275—278.

24. Banik S.J., Rohan A. Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta. 2015. Vol. 179. P. 475—481.

25. Popov K.I., Maksimovic M.D., Trnjancev J.D. Dendritic electrocrystallization and the mechanism of powder for¬mation in the potentiostatic electrodeposition of metals. J. Appl. Electrochem. 1981. Vol. 11. P. 239—246.

26. Divyaraj Desai, Xia Wei, Daniel A. Steingart, Sanjoy Ba- nerjee. Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries. J. Power Sources. 2014. Vol. 256. P. 145—152.


Review

For citations:


Mamyachenkov S.V., Yakornov S.A., Anisimova O.S., Kozlov P.A., Ivakin D.A. RESEARCH OF THE INFLUENCE OF TECHNOLOGICAL PARAMETERS ON EFFICIENCY OF ZINC ELECTROLYSIS FROM ALKALINE SOLUTIONS. Izvestiya. Non-Ferrous Metallurgy. 2018;(6):12-19. (In Russ.) https://doi.org/10.17073/0021-3438-2018-6-12-19

Views: 1001


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)