Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

SOME ASPECTS OF INFLUENCE EXERTED BY LARGE-SCALE EFFECT NATURE AT CYCLIC TESTS ON OPERATION AND RELIABILITY OF ALUMINUM ALLOY PRODUCTS

https://doi.org/10.17073/0021-3438-2018-5-56-65

Abstract

The article describes a study into the large-scale effect and properties of surface layers of solids in case of the Al–Mg system (AMg2) aluminum alloy. It demonstrates the dependence of surface layer properties on the absolute sizes of bodies. The conclusions obtained can be extended to studying the influence of different shapes of solids on their surface and linear bulk properties. New technology development and technological advance constantly toughen metal consumption requirements of engineering devices thus making it rather difficult to avoid fatigue striations and cracks forming in critical parts. In certain cases they may form at the earliest stages of operation, i.e. parts run with cracks most of their life cycle. Therefore, comprehensive assessment of their performance and life requires reliable data on the evolution of cyclic strength and durability parameters, and maximum information on the process of damage accumulation at all stages of fatigue loading: stages of crack origin and development leading to structural failure. Therefore, the need to improve the methods of fatigue testing and failure pattern detection is one of the most relevant problems of technical advance. It is established that the difference in deformation at a surface leads to changes in work-hardenability that involves changes in surface damageability and strength performance of samples. An approach to the large-scale effect as a phenomenon is considered from the perspective of the difference in surface layer plastic deformation for samples of different absolute sizes.

About the Authors

E. A. Chernyshov
Nizhny Novgorod State Technical University (NNSTU) n.a. R.E. Alekseev
Russian Federation

Dr. Sci. (Tech.), prof., Department of metallurgical technologies and equipment, 

603950, Nizhny Novgorod, Minin str., 24



A. D. Romanov
Nizhny Novgorod State Technical University (NNSTU) n.a. R.E. Alekseev
Russian Federation

engineer of the Department centre of special vehicles,

603950, Nizhny Novgorod, Minin str., 24



V. V. Mylnikov
Nizhny Novgorod State Architecturally Construction University
Russian Federation

Cand. Sci. (Tech.), associate prof., Department of technology of construction,

603950, Nizhny Novgorod, Ilyinskaya str., 65



References

1. Sukhonos S.I. Masshtabnyi effekt — nerazgadannaya ugroza [Large-scale effect — unsolved threat]. Moscow: Novyi Tsentr, 2001.

2. Terent’ev V.F., Oksogoev A.A. Tsiklicheskaya prochnost’ metallicheskikh materialov [Cyclic durability of metal materials]. Novosibirsk: Izd-vo NGTU, 2001.

3. Bychkov A.S., Ignatovich S.R., Molyar A.G. Osnovnye vidy i prichiny razrusheniya konstruktivnykh elementov iz alyuminievykh splavov otechestvennykh vozdushnykh sudov transportnoi kategorii [Main types and causes of destruction of structural elements from aluminum alloys of domestic aircrafts of transport category]. Otkrytye informatsionnye i komp’yuternye integrirovannye tekhnologii. 2015. No. 70. P. 135—151.

4. Karan E.V. Prognozirovanie resursa aviatsionnykh konstruktsii s mnogoochagovym povrezhdeniem [Forecasting the resource of aircraft structures with multifocal damage]: The dissertation of Cand. Sci. (Tech.). Kiev: Natsional’nyi aviatsionnyi universitet, 2016. http://er.nau. edu.ua:8080/handle/NAU/17702.

5. Recommendations for regulatory action to prevent widespread fatigue damage in the commercial airplane fleet: a report of the AAWG (Final report). Airworthiness Assurance Working Group, 1999. http://www.faa.gov/aircraft/air_cert/design_approvals/transport/aging_aircraft/media/ARAC_WFDFinalReport399A.pdf.

6. Yang J-N., Trapp W.J. Reliability analysis of aircraft structures under random loading and periodic inspection. Amer. Inst. Aeron. Astron. (AIAA) J. 1974. Vol. 12. P. 1623— 1630.

7. Deodatis G., Fujimoto Y., Ito S., Spencer J., Itagaki H. Non-periodic inspection by Bayesian method I. Probabil. Eng. Mech. 1992. Vol. 7. P. 191—204.

8. Ito S., Deodatis G., Fujimoto Y., Asada H., Shinozuka M. Periodic inspection by bayesian method ii: structures with elements subjected to different stress levels. Probabil. Eng. Mech. 1992. Vol. 7. P. 205—215.

9. Deodatis G., Asada H., Ito S. Reliability of aircraft structures under non-periodic inspections: A Bayesian approach. Eng. Fract. Mech. 1996. Vol. 53. No. 5. P. 789— 805.

10. Rambalakos A., Deodatis G. Non-periodic inspection of aging aircraft structures. In: Proc. 9th Joint FAA/DoD/ NASA Conf. on aging aircraft (Atlanta, USA, GA, March 6—9, 2006). 2006. P. 1—18.

11. Yang J.N., Manning S.D., Garver W.R. Durability methods development (Technical report AFFDL-TR-79-3118). Vol. V: Durability analysis methodology development. Structural and Design Department, GDC, Fort Worth, Texas, US, 1979. http://www.dtic.mil/dtic/tr/fulltext/u2/a116395.pdf.

12. Goranson U.G. Damage tolerance. Facts and fiction. In: Keynote presentation in Int. Conf. on damage tolerance of aircraft structure (Delft, Netherlands, 25 Sept. 2007). 2007. Режим доступа: http://dtas2007.fyper.com/userfiles/file/Paper%2011_Goranson.pdf.

13. Cavallini G., Lazzeri R. Probabilistic approach to fatigue risk assessment in aerospace components. Eng. Fract. Mech. 2007. Vol. 74. No. 18. P. 2964—2970.

14. Kim J.H., Zi G., Van S-N., Jeong M.C., Kong J.S., Kim M. Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model. Struct. Eng. Mech. 2011. Vol. 38. No. 4. P. 443—457.

15. Tong Y.C. Literature review on aircraft structural risk and reliability analysis (Technical report DSTO — TR-1110). Aeronautical and Maritime Research Laboratory, 2001.

16. Ivanova V.S., Terent’ev V.F. Priroda ustalosti metallov [Nature of fatigue of metals]. Moscow: Metallurgiya, 1975.

17. Shetulov D.I. Effekt «stesnennosti» deformatsii metallicheskikh obraztsov s uvelicheniem ikh absolyutnykh razmerov [Effect of «constraint» of deformation of metal samples with increase in their absolute sizes]. Metally. 1993. No. 4. P. 212—216.

18. Shetulov D.I., Andreev V.V., Kravchenko V.N., Kislyakov Yu.P. Vzaimosvyaz’ parametrov soprotivleniya ustalosti i staticheskoi deformatsii kak osnova dlya prognozirovaniya prochnosti i dolgovechnosti metallicheskikh konstruktsionnykh materialov [Interrelation of parameters of resistance of fatigue and static deformation as basis for forecasting of durability and durability of metal constructional materials]. In: Trudy mezhdunarodnogo foruma po problemam nauki, tekhniki i obrazovaniya [Proceedings of the International forum on science, technology and education]. Moscow: ANZ, 2001. P. 28—29.

19. Geguzin Ya.E. Fizika spekaniya [Physics of agglomeration]. Moscow: Nauka, 1967.

20. Oksogoev A.A., Skripnyak V.A., Okuneva T. Strukturnaya adaptatsiya polikristallicheskikh materialov k vneshnim vozdeistviyam [Structural adaptation of polycrystalline materials for external influences]. In: Perspektivnye materialy i tekhnologii dlya raketno-kosmicheskoi tekhniki [Erspective materials and technologies for the missile and space equipment]. Eds. A.A. Berlin, I.G. Assovskii. Moscow: TORUS PRESS, 2007. Vol. 3. P. 101—109.


Review

For citations:


Chernyshov E.A., Romanov A.D., Mylnikov V.V. SOME ASPECTS OF INFLUENCE EXERTED BY LARGE-SCALE EFFECT NATURE AT CYCLIC TESTS ON OPERATION AND RELIABILITY OF ALUMINUM ALLOY PRODUCTS. Izvestiya. Non-Ferrous Metallurgy. 2018;(5):56-65. (In Russ.) https://doi.org/10.17073/0021-3438-2018-5-56-65

Views: 624


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)