Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

SIMULATION OF FINAL DIRECT EXTRUSION STAGE FOR LARGE RODS WITH LOW EXTRUSION RATIO

https://doi.org/10.17073/0021-3438-2018-5-48-55

Abstract

The direct extrusion of large 7075 alloy bars 188, 214, 252, 283, 326, 560 mm in diameter was simulated with 0 and 0,5 friction coefficients, 80° and 90° die cone angles from the 800 mm diameter container at the 200 MN press using the DEFORM-2D software package. It provided the distribution of metal flow radial velocities on the dummy block working surface versus the contact friction value, die cone angle and extrusion ratio factor at the main and final stages of extrusion. Butt-end height at the beginning of back-end extrusion defect formation was taken equal to a distance between the dummy block plane and the plane of extruded metal feeding into flat or cone die openings. The joint effect of the extrusion ratio factor, friction coefficient and die cone angle on the butt-end height, extrusion force, deformation and stress intensity factors, and die opening edge temperature was studied. Numerical experiments were performed based on the 23 complete factorial design for the following parameter variability intervals: Х1 = 3÷9, Х2 = 0÷0,5, Х3 = 80÷90°. Friction between the tool and the blank at the final extrusion stage has a negative effect due to a noticeable radial velocity reduction. This leads to the earlier initiation of central back-end extrusion defect formation. Extrusion into the conical die and increasing the extrusion ratio factor, on the contrary, speeds up radial flow velocity and ensures that the back-end extrusion defect starts forming later. The main factor that determines butt-end height is the extrusion ratio factor. A mathematical model is proposed to select the butt-end thickness for specific conditions of extruding large bars with low extrusion ratios.

About the Authors

V. R. Kargin
Samara National Research University (SNRU) n.a. S.P. Korolev
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of metal forming,

443086, Samara, Moskovskoe shosse, 34

 



A. Yu. Deryabin
Samara National Research University (SNRU) n.a. S.P. Korolev; JSC «Arconic SMZ»
Russian Federation

postgraduate student, Department of metal forming;

leading engineer-technologist,

443051, Samara, Alma-Atinskaya str., 29, k. 33/34



References

1. Lukashenko V.N. Obosnovanie tselesoobraznosti pressovaniya s koeffitsientom vytyazhki λ < 10 [Justification of the expediency of pressing with a drawing coefficient λ < 10]. Tekhnologiya legkikh splavov. 1980. No. 5. P. 11—14.

2. Kargin V.R., Deryabin A.Y. Сharacteristics of large bars extruding using small extrusion ratio. Key Eng. Mater. 2016. Vol. 644. P. 211—217.

3. Perlin I.L., Raitbarg L.Kh. Teoriya pressovaniya metallov [Theory of metal pressing]. Moscow: Metallurgiya, 1975.

4. Bauser M., Sauer G., Siegert K. Extrusion. USA: ASM International, 2006. 2nd ed.

5. Pradip K. Saha. Aluminum extrusion technology. USA: ASM International. 2000.

6. Wojciech Z. Misiolek, Richard M. Kelly. Extrusion of aluminum alloys. URL: https://materialsdata.nist.gov/bitstream/handle/11115/164/Extrusion%20of%20Al%20Alloys.pdf?sequence=3 (accessed: 15.02.2018).

7. Pearson C.E. The extrusion of metals. London: Metal Industry,1960.

8. Sheppard T. Extrusion of aluminum alloys. Dordrecht, Boston, London: Kliwer Academie Bublihers, 1999.

9. Zinov’ev A.V., Kolpashnikov A.I., Polukhin P.I., Glebov Yu.P. Tekhnologiya obrabotki davleniem tsvetnykh metallov i splavov [The technology of pressure treatment of non-ferrous metals and alloys]. Moscow: Metallurgiya, 1992.

10. Loginov Yu.N. Pressovanie kak metod intensivnoi deformatsii metallov i splavov [Pressing as a method of intensive deformation of metals and alloys]. Ekaterinburg: Izdvo Ural. un-ta, 2016.

11. Galatskaya I.K. Metallografiya metallurgicheskikh defektov v pressovannykh polufabrikatakh iz alyuminievykh splavov [Metallography of metallurgical defects in pressed semi-finished products of aluminum alloys]. Kuibyshev: Kuibyshevskoe knizhnoe izdatel’stvo, 1973.

12. Riyadi Tri Widodo Besar, Siswanto Waluyo Adi. The use Abaqus vor teaching the development of cavity defects in forward extrusion processes. Int. J. Mech. Eng. Edikat. 2008. Vol. 36. No. 3. P. 221—224.

13. Grabarnik L.M., Nagaitsev A.A. Pressovanie tsvetnykh metallov i splavov [Pressing of non-ferrous metals and alloys]. Moscow: Metallurgiya, 1991.

14. Shcherba V.N., Raitbarg L.Kh. Tekhnologiya pressovaniya metallov [Technology of metal pressing]. Moscow: Metallurgiya, 1995.

15. Loginov Yu.N., Ershov A.A. Modelirovanie v programmnom komplekse QFORM obrazovaniya pressutyazhiny pri pressovanii [Modeling in the QFORM software complex the formation of press sagging during pressing]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem. 2013. No. 7. P. 42—46.

16. Belyaev A.P., Zaitsev A.P., Lositskii A.F., Nozdrin I.V., Ogurtsov A.N., Savel’ev V.N. Sposob pressovaniya prutkov i press-shaiba dlya ego osushchestvleniya [The method of pressing the rods and the press washer for its implementation]: Pat. 2151013 (RF). 2000.

17. Kargin V.R., Egorov I.A. Press-shaiba [Press washer]: Pat. 2492013 (RF). 2013.

18. Biswas Amit Kumar, Leventer Robert. Extrusion member for positioning behind the rear face of material to be extruded in an extrusion press: Pat. 3919873 (USA). 1975.

19. Loginov Yu.N. Sposob pressovaniya metallov i ustroistvo dlya ego osushchestvleniya [Method of pressing metals and the device for its implementation]: Pat. 230699 (RF). 2007.

20. Parvizian F., Kayser T., Horting C., Svendsen B. Thermomechanical modeling and simulation of materials processing technology. J. Mater. Process. Technol. 2009. No. 209. P. 876—883.

21. Libura W., Rękas A. Numerical modelling in designing aluminium extrusion. In: Aluminum alloys: new trends in fabrication and applications. Ed. Zaki Ahmad. InTech, 2012. P. 137—157. URL: https://www.intechopen.com/ books/aluminium-alloys-new-trends-in-fabricationand-applications/numerical-modelling-in-designingaluminium-extrusion (accessed: 15.02.2018).

22. Stebunov S., Biba N., Lishny A., Jiao L. Practical implementation of numerical modeling to optimization of extrusion die design for production of complex shape profiles. Alum. Extrus. Finish. 2013. No. 4. P. 20—24.

23. Kargin V.R., Bykov A.P., Kargin B.V., Erisov Ya.A. Modelirovanie protsessov obrabotki metallov davleniem v programme DEFORM-2D [Modeling of metal forming processes in the DEFORM-2D program]. Samara: MIR, 2010.

24. Sawtell R.R., Staley J.T. Interactions between quenching and aging in allow 7075. J. Alum. 1983. No. 2. P. 127— 133

25. Adler Yu.P., Markova E.V., Granovskii Yu.V. Planirovanie eksperimenta pri poiske optimal’nykh uslovii [Planning an experiment when searching for optimal conditions]. Moscow: Nauka, 1976.


Review

For citations:


Kargin V.R., Deryabin A.Yu. SIMULATION OF FINAL DIRECT EXTRUSION STAGE FOR LARGE RODS WITH LOW EXTRUSION RATIO. Izvestiya. Non-Ferrous Metallurgy. 2018;(5):48-55. (In Russ.) https://doi.org/10.17073/0021-3438-2018-5-48-55

Views: 670


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)