Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

ELECTROLYSIS OF GRANULATED COPPER-NICKEL MATTE

https://doi.org/10.17073/0021-3438-2018-5-16-22

Abstract

The paper justifies the method of processing sulfide-metal melts including their granulation and subsequent electrolysis of granules. High-speed crystallization ensures ultrafine structure formation and stabilizes non-stoichiometric high-temperature phases leading to an increase in the reactivity of granules during subsequent hydrometallurgical processing. Copper powder was isolated at the cathode, and sulfur-sulfide slime (NiS–Сu9S5–Cu7S4–S) was isolated at the anode in a sulfuric acid solution during the electrolysis of granular copper-nickel matte (Cu : Ni = 1 : 1). The influence of current density and process duration on electrolysis parameters and the quality of copper powder isolated was estimated. Sulfur sulfide slime (containing more than 50 % sulfur) forms a passivation layer on granule surfaces, which prevents reagent feeding and reaction product removal from the interaction zone. Anodic current density of up to 100 A/m2 ensures metal conversion into a solution and copper powder (PMS-1 grade) formation at the cathode. Powder is represented by 1 to 100 μm particles of dendritic and fragmented shapes. High-quality copper powder isolation was achieved when saturating electrolyte with nickel to 28,0 g/dm3 . In this case, anode efficiency was 37 % with respect to sulfur, and cathode efficiency was 92,8 % for copper. The process is recommended for copper and nickel separation when processing sulfide-metal alloys. Copper content of in the solution during electrolysis ranged from 0,4 to 2,0 g/dm3.

About the Authors

O. V. Nechvoglod
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMET UB RUS)
Russian Federation

Cand. Sci. (Tech.), research scientist of the laboratory of pyrometallurgy of non-ferrous metals,

620016, Yekaterinburg, Amundsen str., 101



S. V. Sergeeva
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMET UB RUS)
Russian Federation

Cand. Sci. (Tech.), research scientist of the laboratory of pyrometallurgy of non-ferrous metals, 

620016, Yekaterinburg, Amundsen str., 101



K. V. Pikulin
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMET UB RUS)
Russian Federation

research assistant of the laboratory of pyrometallurgy of non-ferrous metals,

620016, Yekaterinburg, Amundsen str., 101



E. N. Selivanov
Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMET UB RUS)
Russian Federation

Dr. Sci. (Tech.), head of the laboratory of pyrometallurgy of non-ferrous metals,

620016, Yekaterinburg, Amundsen str., 101



References

1. Chizhikov D.M., Gulyanitskaya Z.F., Pliginskaya L.V., Subbotina E.A. Elektrometallurgiya medno-nikelevykh sul’fidnykh splavov v vodnykh rastvorakh [Electrometallurgy of copper-nickel sulphide alloys in aqueous solutions. Moscow: Nauka, 1977.

2. Nechvoglod O.V., Selivanov E.N., Mamyachenkov S.V. The electrolysis of granulated copper-nickel matte. In: Metals and materials processing in clean environment. Aqueous, low temperatures and electrochemical processing: Fray Intern. Symp. (Cancun, 27 Nov. — 1 Dec. 2011). Wilmington: FLOGEN Technologies Inc., 2012. Vol. 6. P. 601—620.

3. Selivanov E.N., Nechvoglod O.V., Lobanov V.G. The effect of the nickel sulphide alloys structure on their electrochemical oxidation parameters. In: 15th IFAC Symp. on control, optimization and automation in mining, minerals and metal processing proceedings (San-Francisco, 25—28 Aug. 2013). Wilmington: FLOGEN Technologies Inc., 2013. P. 259— 262.

4. Fokeeva I.G., Tsymbulov L.B., Ertseva L.N., Naftal M.N., Fomichev V.B. Vybor optimal’nogo rezhima okhlazhdeniya fainshteina s povyshennym soderzhaniem medi [Choice of the optimal cooling regime for a finshtein with an increased copper content.]. Tsvetnye metally. 2005. No. 7. Р. 42—45.

5. Selivanov E.N., Nechvoglod O.V., Udoeva L.Yu., Lobanov V.G., Mamyachenkov S.V. Electrochemical oxidation of copper-nickel metal-sulfide alloys. Metall. Nonferr. Met. 2009. Vol. 6. P. 577—581.

6. Ertseva L.N., Tsemekhman L.Sh., Tsymbulov L.B., Fomichev V.B. O stroenii tverdykh shteinov nikelevogo proizvodstva [On the structure of solid mattes of nickel production]. Tsvetnye metally. 2008. No. 3. Р. 21—23.

7. Naftal M.N., Shestakova R.D., Petrov A.F. Osobennosti tekhnologii vyshchelachivaniya vysokomedistogo fainshteina [Features of the leaching technology of high-mediated filesteina]. Tsvetnye metally. 2000. No. 6. Р. 44—49.

8. Remen T.F., Ryabko A.G., Kostritsyn V.N., Ivanova A.F. Sposoby pererabotki medno-nikelevykh fainshteinov [Methods of processing copper-nickel fivessteins]. Tsvetnaya metallurgiya. Ser. Proizvodstvo tyazhelykh tsvetnykh metallov. 1982. Iss. 7. P. 1—36.

9. Nechvoglod O.V., Selivanov E.N., Mamyachenkov S.V. Effect of structure on the electrochemical oxidation rate of copper and nickel sulfides. Defect Diffus. Forum. 2012. Vol. 326—328. P. 383—387.

10. Travnichek M.I., Maslyanitskii I.N. Izmenenie struktury medno-nikelevykh fainshteinov v zavisimosti ot rezhima ikh okhlazhdeniya [Changing the structure of copper-nickel fiveshteynov depending on the mode of their cooling]. Izvestiya vuzov. Tsvetnaya metallurgiya. 1970. No. 1. Р. 31—34.

11. Ayers M.D. Production of powders, strip and other metal products from refined molted: Pat. 3502446 (USA). 1967.

12. Tsantrizos P.G., Francois A., Ehtezarian M. Method and apparatus for production metal powders: Pat. 08515425 (USA). 1995.

13. Chanturiya V.A., Vigdergauz V.E. Elektrokhimiya sul’fidov. Teoriya i praktika flotatsii [Theory and practice of flotation]. Moscow: Ruda i metally, 2008.

14. Kakovskii I.A., Naboichenko S.S. Kinetika okisleniya i rastvoreniya khal’kogenidov tsvetnykh metallov [Kinetics of oxidation and dissolution of non-ferrous metal chalcogenides]. Moscow: Nauka, 1986.

15. Peters E. Direct leaching of sulfides: chemistry and application. Metall. Trans. B. 1976. Vol. 7B. P. 505—517.

16. Ghali E., Maruejouls A., Deroo D. Electrodissolution de la millérite en milieu chlorhydrique. J. Appl. Electrochem. 1980. Vol. 10. P. 709—719.

17. Price D.C., Davenport W.G. Anodic reactions of Ni3S2, β-NiS and nickel matte. J. Appl. Electrochem. 1982. Vol. 12. P. 281—290.

18. Watling H.R. The bioleaching of nickel-copper sulfides. Hydrometallurgy. 2006. Vol. 91. Iss. 1—4. P. 70—88.

19. Durga I.K., Srinivasa S.R., Reddy A.E., Chandu V., Gopi M., Kim H. Achieving copper sulfide leaf like nanostructure electrode for high performance super capacitor and quantum-dot sensitized solar cells. Appl. Surf. Sci. 2018. Vol. 435. P. 666—675.

20. Naboichenko S.S. Poroshki tsvetnykh metallov [Powders of non-ferrous metals]. Moscow: Metallurgiya, 1997.

21. Klyain S.E., Selivanov E.N., Voronov V.V., Nechvoglod O.V., Naboichenko S.S. Sposob izvlecheniya elementnoi sery iz serosoderzhashchikh materialov [Method for recovery of elemental sulfur from sulfur-containing materials]: Pat. 2427529 (RF). 2011.

22. Frank K.C., Michael S.M., Venkoba R., Timothy G.R., William G.D. Extractive metallurgy of nickel, cobalt and platinum-group metals. 2-nd ed. Oxford: Elsevier, 2011.

23. Schlesinger M.E., Mattew J.K., Kathryn C.S., Davenport G.W. Extractive metallurgy of copper. 2-nd ed. Oxford: Elsevier, 2011.


Review

For citations:


Nechvoglod O.V., Sergeeva S.V., Pikulin K.V., Selivanov E.N. ELECTROLYSIS OF GRANULATED COPPER-NICKEL MATTE. Izvestiya. Non-Ferrous Metallurgy. 2018;(5):16-22. (In Russ.) https://doi.org/10.17073/0021-3438-2018-5-16-22

Views: 2854


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)