Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

EXTRUSION OF 01417 ALLOY INGOTS OBTAINED IN THE ELECTROMAGNETIC CRYSTALLIZER AT THE CONFORM UNIT

https://doi.org/10.17073/0021-3438-2018-4-53-59

Abstract

It is known that casting long ingots of small sections (∅8–12 mm) of 01417 alloy into an electromagnetic crystallizer makes it possible to obtain a dispersed structure with insignificant intradendritic segregation. Diffusion annealing of ingots (550 °C, 4–5 h holding time) eliminates intracrystalline segregation and reduces the level of internal stresses in metal thus providing the conditions for subsequent wire drawing. The paper demonstrates that high plastic deformation of ingots without diffusion annealing can be achieved by Conform continuous extrusion, which ensures high quality and geometrical accuracy of products. The analysis of various Conform units revealed an inherent weakness – the absence of connection between the system securing the fixed part of the detachable container (shoe) and the drive wheel shaft, which leads to an increased load in the operating mode. The purpose of the work was to upgrade the Conform unit by creating a connection between the shoe and the impeller shaft to obtain a high-quality billet for subsequent wire drawing of the ∅12 mm ingot cast into the electromagnetic crystallizer. An optimal temperature of ingot extrusion (300 °С) was found to eliminate the intense adhesion of wrought metal on the tool surface. The experimental ∅5 mm rod made of 01417 alloy obtained from the ∅12 mm ingot at the Conform unit features high processing ductility. This is indicated by an increase in its yield point and relative elongation. Metallographic studies demonstrated a fine-grained structure achieved in the extruded rod, which provides the conditions for subsequent wire drawing without annealing. The results of the study provide a basis for refining the process conditions of calibrated billet production on the Conform unit followed by wire drawing with required properties.

About the Authors

Yu. V. Gorokhov
Siberian Federal University (SibFU).
Russian Federation

Gorokhov Yu.V. – Dr. Sci (Tech.), Prof., Department «Metal forming».

660025, Russia, Krasnoyarsk, Krasnoyarsiy rabochiy av., 95.



V. N. Timofeev
Siberian Federal University (SibFU).
Russian Federation

Timofeev V.N. – Dr. Sci (Tech.), Prof., Department «Foundry production», SibFU.

660025, Russia, Krasnoyarsk, Krasnoyarsiy rabochiy av., 95.



S. V. Belуaev
Siberian Federal University (SibFU).
Russian Federation

Belуaev S.V. – Dr. Sci (Tech.), Prof., Department «Foundry production», SibFU.

660025, Russia, Krasnoyarsk, Krasnoyarsiy rabochiy av., 95.



I. V. Uskov
Siberian Federal University (SibFU).
Russian Federation

Uskov I.V. – Cand. Sci. (Tech.), Associate prof., Department «Foundry production», SibFU.

660025, Russia, Krasnoyarsk, Krasnoyarsiy rabochiy av., 95.



I. Yu. Gubanov
Siberian Federal University (SibFU).
Russian Federation

Gubanov I.Yu. – Cand. Sci. (Tech.), Associate prof., Department «Foundry production», SibFU. 

660025, Russia, Krasnoyarsk, Krasnoyarsiy rabochiy av., 95.



I. S. Gudkov
NPC «Magnetic Hydrodynamics».
Russian Federation
Gudkov I.S. – Leading specialist, High-frequency current technology department, SibFU, NPC «Magnetic Hydrodynamics».


References

1. Evans J. The use of electromagnetic casting for Al alloys and other metals. JOM. 1995. Vol. 47 (5). P. 38—41.

2. Yu-bo Z., Jian-Zhong Cui, Dan Mou, Qing-feng Zhu, Xiangjie Wang, Lei Li. Effect of electromagnetic field on microstructure and macrosegregation of flat ingot of 2524 aluminium alloy. Trans. Nonferr. Met. Soc. China. 2014. Vol. 2. P. 132—134.

3. Stetsenko V.Yu. Mekhanizmy protsessa kristallizatsii metallov i splavov [Mechanisms of crystallization of metals and alloys]. Lit’e i Metallurgiya. 2013. No. 1. P. 48—54.

4. Sidel’nikov S.B., Gorokhov Yu.V., Belyaev S.V. Innovatsionnye sovmeshchennye tekhnologii pri obrabotke metallov [Innovative technologies combined in the processing metals]. Zhurnal Sibirskogo federal’nogo universiteta. Ser.: Tekhnika i tekhnologii. 2015. Vol. 8. No. 2. P. 185—191.

5. Morozov A.A. Nepreryvnoe pressovanie sposobom «konform» [Continuous extrusion method Conform]. Innovatsionnaya nauka. 2015. Vol. 12 (2). P. 104—105.

6. Bauzer M., Zauer G., Zigert K. Pressovanie [Extrusion: A Reference Guide] (Ed. V.L. Berezhnoi). Moscow: ALYuMSIL MViT, 2009.

7. Goodes I.M. Continuous extrusion by the Conform process. Wire Ind. 1975. Vol. 501. Р. 677—678.

8. Sherkunov V.G., Gorokhov Yu.V., Konstantinov I.L., Katryuk V.P., Ivanov E.V. Ispol’zovanie sposoba Konform dlya pererabotki struzhki iz alyuminievykh splavov [Use of the method of Conform for processing of chips from aluminum alloys]. Izv. vuzov. Tsvet. Metallurgiya. 2015. No. 3. P. 60—63.

9. Yun X.-B., Yao M.-L., Wu Y., Song B.-Y. Numerical simulation of continuous extrusion extending forming under the large expansion ratio for copper strip. Appl. Mechan. Mater. 2011. Vol. 80-81. P. 91—95.

10. Raab G.I., Raab A.G., Shibakov V.G. Analysis of shear deformation scheme efficiency in plastic structure formation processes. Metalurgija. 2015. Vol. 54. No. 2. P. 423—425.

11. Semenova I.P., Polyakov A.V., Raab G.I., Lowe T.C., Valiev R.Z. Enhanced fatigue properties of ultrafine-grained ti rods processed by ECAP-Conform. J. Mater. Sci. 2012. Vol. 47. No. 22. P. 7777—7781.

12. Zhou T.G., Jiang Z.Y., Wen J.L., Li H., Tieu A.K. Semi-solid continuous casting—extrusion of AA6201 feed rods. Mater. Sci. Eng. 2012. Vol. 8. P. 108—114.

13. Gorohov YU.V., Timofeev V.N., Belyaev S.V., Avdulov A.A., Uskov I.V., Gubanov I.YU., Avdulova YU.S., Ivanov A.G. Pressovyi uzel ustanovki conform dlya nepreryvnogo pressovaniya tsvetnykh metallov [Extrusion assembly unit conform for continuous pressing of non-ferrous metals]. Izv. vuzov. Tsvet. metallurgiya. 2017. No. 4. P. 69—75.

14. Aborkin A.V., Elkin A.I., Babin D.M. Osobennosti izmeneniya energosilovykh parametrov, temperatury i gidrostaticheskogo davleniya pri nepreryvnom pressovanii nekompaktnogo alyuminievogo materiala [Features of change of power parameters, temperature and hydrostatic pressure in a continuous extrusion of non-compact aluminum material]. Izv. vuzov. Tsvet. metallurgiya. 2015. Vol. 6. P. 23—29.

15. Fu-rong Cao, Jing-lin Wen, Hua Ding, Zhao-dong Wang, Yinglong Li, Ren-guo Guan, Hui Hou. Force analysis and experimental study of pure aluminum and Al—5%Ti—1%B alloy continuous expansion extrusion forming process. Trans. Nonferr. Met. Soc. China. 2013. Vol. 23. P. 201—207.

16. Yun X.-B., Yao M.-L., Zhao Y., Yang J.-Y., Li B., Song B.-Y. Effect of the preventing mould and die structure on continuous extrusion deforming under large expansion ratio. Suxing Gongcheng Xuebao: J. Plastic. Eng. 2011. Vol. 18. No. 4. P. 1—5.

17. Gorokhov Yu.V., Belyaev S.V., Uskov I.V., Konstantinov I.L., Gubanov I.Yu., Gorokhova T.Yu., Khramtsov P.A. Primenenie protsessa sovmeshchennogo lit’ya — pressovaniya pri izgotovlenii alyuminievoi provoloki dlya paiki volnovodov [The application process of the combined casting — pressing in the manufacture of aluminum wire solder waveguides]. Izv. vuzov. Tsvet. metallurgiya. 2016. Vol. 6. P. 65—70.

18. Mitka M., Gawlik M., Bigaj M., Szymanski W. Continuous rotary extrusion (CRE) of flat sections from 6063 alloy. Key Eng. Mater. 2015. Vol. 641. P. 183—189.

19. Popescu I.N., Bratu V., Rosso M., Popescu C., Stoian E.V. Designing and continuous extrusion forming of Al— Mg—Si contact lines for electric railway. J. Optoelectr. Adv. Mater. 2013. Vol. 15. P. 712—717.

20. Zhao Y., Song B.-Y., Yun X.-B., Pei J.-Y., Jia C.-B., Yan Z.-Y. Effect of process parameters on sheath forming of continuous extrusion sheathing of aluminum. Trans. Nonferr. Met. Soc. China (Eng. Ed.). 2012. Vol. 22 (12). P. 3073— 3080.

21. Erdmann M. Continuous extrusion process. Kautschuk Gummi Kunststoffe. 2012. Bd. 65. S. 16—19.

22. Fan Z.X., Song B.Y., Yun X.B., Mohanraj J., Barton D.C. An analysis of the contact stress distribution at the surface of the tooling during the Conform process: Proc. Institution of Mechanical Engineers. Pt. E. J. Process Mechan. Eng. Vol. 223 (4). P. 243—250.


Review

For citations:


Gorokhov Yu.V., Timofeev V.N., Belуaev S.V., Uskov I.V., Gubanov I.Yu., Gudkov I.S. EXTRUSION OF 01417 ALLOY INGOTS OBTAINED IN THE ELECTROMAGNETIC CRYSTALLIZER AT THE CONFORM UNIT. Izvestiya. Non-Ferrous Metallurgy. 2018;(4):53-59. (In Russ.) https://doi.org/10.17073/0021-3438-2018-4-53-59

Views: 897


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)