Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

INFLUENCE OF ELECTROLYTE COMPOSITION AND OVERHEATING ON THE SIDELEDGE IN THE ALUMINUM CELL

https://doi.org/10.17073/0021-3438-2018-4-24-30

Abstract

The paper presents a theoretical study conducted to investigate the effect that the chemical composition of electrolyte and its overheating have on the size of sideledge formed in an aluminum smelting bath. Three electrolyte compositions were chosen: (1) sodium cryolite with the cryolite ratio CR = 2,7; (2) cryolite CR = 2,7 + 5 wt.% CaF2; (3) cryolite CR = 2,7 + 5 wt.% CaF2 + 5 wt.% Al2О3. The electrolyte liquidus overheating temperatures were 5, 10, 15 and 20 °C. Calculations were performed using the finite element method. A simplified design of an aluminum cell was used with a prebaked anode. The temperature field was calculated using a mathematical model based on the Boussinesq approximation, which contains the Navier–Stokes equation as well as thermal conductivity and incompressibility equations. The key role of electrolyte overheating in sideledge formation was established. The resulting sideledge profile depends on the heat transfer coefficients and thermophysical properties of materials. The smallest sideledge thickness with the same electrolyte overheating was observed in cryolite composition 3, and the profiles of the formed sideledge for samples 1 and 2 were nearly the same. The thickness of the sideledge formed with a 5 degree overheating exceeded 7 cm and the difference in temperature between the sideledge in contact with electrolyte and the side block wall was 20–25 degrees. It was found that the virtually total disappearance of the sideledge occurs at electrolyte liquidus overheating by 20 degrees.

About the Authors

V. V. Stakhanov
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS (IHTE UB RAS).
Russian Federation

Stakhanov V.V. – Laboratory assistant, Laboratory of electrode processes.

620137, Russia, Ekaterinburg, Akademicheskaya 20.



A. A. Redkin
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS (IHTE UB RAS).
Russian Federation

Redkin A.A. – Senior researcher, Laboratory of electrode processes.

620137, Russia, Ekaterinburg, Akademicheskaya 20.



Yu. P. Zaikov
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS (IHTE UB RAS);
Russian Federation

Zaikov Yu.P. – Dr. Sci. (Chem.), Prof., Research supervisor of IHTE UrB RAS; Head of Department «Technology of electrochemical productions».

620137, Russia, Ekaterinburg, Akademicheskaya 20; 620002, Russia, Yekaterinburg, Mira str., 19.



A. E. Galashev
Institute of High Temperature Electrochemistry of the Ural Branch of the RAS (IHTE UB RAS).
Russian Federation

Galashev A.E. – Dr. Sci. (Phys.-Math.), Principal researcher, Laboratory of electrode processes.

620137, Russia, Ekaterinburg, Akademicheskaya 20.



References

1. Capitance W, Schmidt-Hatting W. Magnetic fields in high amperage aluminum reduction cells. JOM. 1965. Vol. 17. No. 3. P. 271—275.

2. Zhou J., Dupuis M. In-depth analysis of lining designs for several 420 kA electrolytic cells. Light metals. 2015. P. 685—690.

3. Welch B.J., Hyland M.M., James B.J. Future materials requirements for the high-energy-intensity production of aluminum. JOM. 2001. Vol. 53. No. 2. P. 13—18.

4. Kvande H. Bath chemistry and aluminum cell performance: facts, fictions, and doubts. JOM. 1994. Vol. 46. No. 11. P. 22—28.

5. Haupin W. The influence of bath additives on Hall-Heroult bath properties. JOM. 1991. Vol. 43. No. 11. P. 28—34.

6. Dupuis M. Computation of aluminum reduction cell energy balance using ANSYS ® Finite element models. TMS Light Metals. 1998. P. 409—417.

7. Beier S., Chen J., Fortin H., Fafard M. FEM analysis of the anode connection in aluminum reduction cell. Light Metals. 2011. P. 979—984.

8. Wei L., Jie L., Yan-qing, L., Ye-xiang. L. 2D Finite element analysis of thermal balance for drained aluminum reduction cells. J. Central South University of Technology. 2007. Vol. 14. No. 6. P. 783—787.

9. Dupius M. Using ANSYS to model aluminum reduction cell since 1984 and beyond: Proc. ANSYS Regional Conference, Toronto, 2002. 10. Taylor M., Etzion, R., Lavoie P., Tan J.N. Energy balance regulation and flexible production: A new frontier for aluminum smelting. Metall. Mater. Trans. E. 2014. Vol. 1. No. 4. P. 292—302.

10. Lavoie P., Namboothiri S., Dorreen M., Chen J., Zeigler D., Taylor M. Increasing the power modulation window of aluminium smelter pots with shell heat exchanger technology. Light Metals. 2011. P. 369—374.

11. Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., Sterten A. Aluminium electrolysis: Fundamentals of the Hall-Heroult process. 3-rd ed. Dusseldorf: Aluminium-Verlag Marketing and Kommunikation GmbH, 2001.

12. Solheim A. Some aspects of heat transfer between bath and sideledge in aluminium reduction cells. Light Metals. 2011. P. 381—386.

13. Taylor P., Welch B. Melt/freeze heat transfer measurements in cryolite-based electrolytes. Metall. Trans. B. 1987. Vol. 18. No. 2. P. 391—398.

14. Борисоглебский Ю.В., Галевский Г.В., Кулагин Н.М., Минцис М.Я., Сиразутдинов Г.А. Металлургия алюминия: Учеб. пос. Новосибирск: Наука, 1999; Borisoglebsky Yu.B., Galevsky G.V., Kulagin N.M., Mincis M.Ya., Sirazutdinov G.A. Metallurgiya aluminiya [Aluminum metallurgy: Textbook]. Novosibirsk: Nauka, 1999.

15. Arkhipov. G.V., Pingin V.V., Tretyakov Y.A., Polyakov P.V. Simulation of cell thermoelectric field with consideration of electrochemical processes. Light Metals. 2007. P. 327—331.

16. Балкевич. В.Л. Техническая керамика. Учеб. для вузов. М.: Стройиздат, 1984; Balkevich V.L. Tehnicheskaya keramika [Technical ceramics: Textbook for Technical Higher Schools]. Moscow: Stroiizdat, 1984.

17. ASM Metals handbook. Vol. 1: Properties and selection: Irons, steels, and high-performance alloys. 10-th ed. ASM, 1990.

18. Desai P.D., Chu T.K., James H.M., Ho C.Y. Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data. 1984. Vol. 13. No. 4. P. 1069—1096.

19. Shinno H., Kitajima M., Okada M. Thermal stress analysis of high heat flux materials. J. Nucl. Mater. 1988. Vol. 155-157. P. 290—294.

20. Giordanengo B., Benazzi N., Vinckel J., Gasser J.G., Roubi L. Thermal conductivity of liquid metals and metallic alloys. J. Non-Cryst. Solids. 2000. Vol. 250-252. P. 377—383.

21. Gale W.F., Totemeier T.C. Smithells metals reference book, Amsterdam: Elsevier, 1988.

22. Iida T., Guthrie R.I.L. The physical properties of liquid metals. Oxford: Clarendon, 1988.


Review

For citations:


Stakhanov V.V., Redkin A.A., Zaikov Yu.P., Galashev A.E. INFLUENCE OF ELECTROLYTE COMPOSITION AND OVERHEATING ON THE SIDELEDGE IN THE ALUMINUM CELL. Izvestiya. Non-Ferrous Metallurgy. 2018;(4):24-30. (In Russ.) https://doi.org/10.17073/0021-3438-2018-4-24-30

Views: 754


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)