INFLUENCE OF ELECTROLYTE COMPOSITION AND OVERHEATING ON THE SIDELEDGE IN THE ALUMINUM CELL
https://doi.org/10.17073/0021-3438-2018-4-24-30
Abstract
About the Authors
V. V. StakhanovRussian Federation
Stakhanov V.V. – Laboratory assistant, Laboratory of electrode processes.
620137, Russia, Ekaterinburg, Akademicheskaya 20.
A. A. Redkin
Russian Federation
Redkin A.A. – Senior researcher, Laboratory of electrode processes.
620137, Russia, Ekaterinburg, Akademicheskaya 20.
Yu. P. Zaikov
Russian Federation
Zaikov Yu.P. – Dr. Sci. (Chem.), Prof., Research supervisor of IHTE UrB RAS; Head of Department «Technology of electrochemical productions».
620137, Russia, Ekaterinburg, Akademicheskaya 20; 620002, Russia, Yekaterinburg, Mira str., 19.
A. E. Galashev
Russian Federation
Galashev A.E. – Dr. Sci. (Phys.-Math.), Principal researcher, Laboratory of electrode processes.
620137, Russia, Ekaterinburg, Akademicheskaya 20.
References
1. Capitance W, Schmidt-Hatting W. Magnetic fields in high amperage aluminum reduction cells. JOM. 1965. Vol. 17. No. 3. P. 271—275.
2. Zhou J., Dupuis M. In-depth analysis of lining designs for several 420 kA electrolytic cells. Light metals. 2015. P. 685—690.
3. Welch B.J., Hyland M.M., James B.J. Future materials requirements for the high-energy-intensity production of aluminum. JOM. 2001. Vol. 53. No. 2. P. 13—18.
4. Kvande H. Bath chemistry and aluminum cell performance: facts, fictions, and doubts. JOM. 1994. Vol. 46. No. 11. P. 22—28.
5. Haupin W. The influence of bath additives on Hall-Heroult bath properties. JOM. 1991. Vol. 43. No. 11. P. 28—34.
6. Dupuis M. Computation of aluminum reduction cell energy balance using ANSYS ® Finite element models. TMS Light Metals. 1998. P. 409—417.
7. Beier S., Chen J., Fortin H., Fafard M. FEM analysis of the anode connection in aluminum reduction cell. Light Metals. 2011. P. 979—984.
8. Wei L., Jie L., Yan-qing, L., Ye-xiang. L. 2D Finite element analysis of thermal balance for drained aluminum reduction cells. J. Central South University of Technology. 2007. Vol. 14. No. 6. P. 783—787.
9. Dupius M. Using ANSYS to model aluminum reduction cell since 1984 and beyond: Proc. ANSYS Regional Conference, Toronto, 2002. 10. Taylor M., Etzion, R., Lavoie P., Tan J.N. Energy balance regulation and flexible production: A new frontier for aluminum smelting. Metall. Mater. Trans. E. 2014. Vol. 1. No. 4. P. 292—302.
10. Lavoie P., Namboothiri S., Dorreen M., Chen J., Zeigler D., Taylor M. Increasing the power modulation window of aluminium smelter pots with shell heat exchanger technology. Light Metals. 2011. P. 369—374.
11. Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., Sterten A. Aluminium electrolysis: Fundamentals of the Hall-Heroult process. 3-rd ed. Dusseldorf: Aluminium-Verlag Marketing and Kommunikation GmbH, 2001.
12. Solheim A. Some aspects of heat transfer between bath and sideledge in aluminium reduction cells. Light Metals. 2011. P. 381—386.
13. Taylor P., Welch B. Melt/freeze heat transfer measurements in cryolite-based electrolytes. Metall. Trans. B. 1987. Vol. 18. No. 2. P. 391—398.
14. Борисоглебский Ю.В., Галевский Г.В., Кулагин Н.М., Минцис М.Я., Сиразутдинов Г.А. Металлургия алюминия: Учеб. пос. Новосибирск: Наука, 1999; Borisoglebsky Yu.B., Galevsky G.V., Kulagin N.M., Mincis M.Ya., Sirazutdinov G.A. Metallurgiya aluminiya [Aluminum metallurgy: Textbook]. Novosibirsk: Nauka, 1999.
15. Arkhipov. G.V., Pingin V.V., Tretyakov Y.A., Polyakov P.V. Simulation of cell thermoelectric field with consideration of electrochemical processes. Light Metals. 2007. P. 327—331.
16. Балкевич. В.Л. Техническая керамика. Учеб. для вузов. М.: Стройиздат, 1984; Balkevich V.L. Tehnicheskaya keramika [Technical ceramics: Textbook for Technical Higher Schools]. Moscow: Stroiizdat, 1984.
17. ASM Metals handbook. Vol. 1: Properties and selection: Irons, steels, and high-performance alloys. 10-th ed. ASM, 1990.
18. Desai P.D., Chu T.K., James H.M., Ho C.Y. Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data. 1984. Vol. 13. No. 4. P. 1069—1096.
19. Shinno H., Kitajima M., Okada M. Thermal stress analysis of high heat flux materials. J. Nucl. Mater. 1988. Vol. 155-157. P. 290—294.
20. Giordanengo B., Benazzi N., Vinckel J., Gasser J.G., Roubi L. Thermal conductivity of liquid metals and metallic alloys. J. Non-Cryst. Solids. 2000. Vol. 250-252. P. 377—383.
21. Gale W.F., Totemeier T.C. Smithells metals reference book, Amsterdam: Elsevier, 1988.
22. Iida T., Guthrie R.I.L. The physical properties of liquid metals. Oxford: Clarendon, 1988.
Review
For citations:
Stakhanov V.V., Redkin A.A., Zaikov Yu.P., Galashev A.E. INFLUENCE OF ELECTROLYTE COMPOSITION AND OVERHEATING ON THE SIDELEDGE IN THE ALUMINUM CELL. Izvestiya. Non-Ferrous Metallurgy. 2018;(4):24-30. (In Russ.) https://doi.org/10.17073/0021-3438-2018-4-24-30