Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

FROM METALLURGY OF GRANULES TO ADDITIVE TECHNOLOGIES

https://doi.org/10.17073/0021-3438-2018-3-84-94

Abstract

OJSC «Kompozit» traces its history back to the Central Research Institute of Materials Science (CRIMS) and successfully acts as a leading material science institute in the rocket and space industry up to the present day. The enterprise uses and improves state-of-theart technologies, and creates a variety of new metal, non-metallic, composite and ceramic materials. This article provides an overview of powder sector development from the metallurgy of granules to additive technologies and shows the participation of MISIS graduates. The experience of OJSC «Kompozit» in the manufacturing of parts by selective electron beam melting (SEBM) of home-made VT6S titanium alloy powders. Initial powders are obtained by plasma centrifugal spraying of the bar stock. It is shown that the powders feature an ideal spherical shape, low defect rate, high processability and fully meet the process requirements. The microstructure and properties of samples and parts obtained by the SEBM are studied.

About the Authors

A. N. Timofeev
OJSC «Kompozit»
Russian Federation

Dr. Sci. (Tech.), vice-director 

141070, Russia, Korolev, Pionerskaya str., 4



A. I. Logacheva
OJSC «Kompozit»
Russian Federation

Dr. Sci. (Tech.), head of the Department of metallic materials and metallurgical technologies 

141070, Russia, Korolev, Pionerskaya str., 4



References

1. Logacheva A.I. Razrabotka tekhnologii granul’noi metallurgii kombinirovannykh detalei dlya dvigatelei raketno-kosmicheskoi i aviatsionnoi tekhniki [Development of technology of granular metallurgy of combined parts for engines of rocket and space and aviation equipment]: Abstract of the dissertation of PhD. Moscow: MAI, 2008.

2. Logacheva A.I. Kompleksnaya tekhnologiya izgotovleniya tonkostennykh elementov metodom poroshkovoi metallurgii dlya proizvodstva detalei iz konstruktsionnykh i funktsional’nykh splavov na osnove titana i nikelya dlya izdelii raketno-kosmicheskoi tekhniki [Complex technology of manufacturing thin-walled elements by powder metallurgy for the production of parts from structural and functional alloys based on titanium and nickel for products of rocket and space technology]: Abstract of the dissertation of Dr. Sci. (Tech.). Moscow: IMET RAN, 2017.

3. Zlenko M.A., Popovich A.A., Mutylina I.N. Additivnye tekhnologii v mashinostroenii [Additive technologies in mechanical engineering]. Saint-Petersburg: Izd-vo SPbGU, 2013.

4. Baumers M., Dickens P., Tuck Ch., Hague R. The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technol. Forecast. Social Change. 2016. Vol. 102. P. 193—201.

5. Additivnoe proizvodstvo: na pike zavyshennykh ozhidanii [Additive production: at the peak of inflated expectations]. URL: http://www.umpro.ru/index.php?page_id=17&art_id_1=610&group_id_4=110 (accessed: 05.06.2017).

6. Gibson I., Rosen D.W., Stucker B. Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. N.Y.: Springer Science & Business Media, 2009.

7. Portolés L., Jordá O., Jordá L., Uriondo A., Esperon-Miguez M., Perinpanayagam S. A qualification procedure to manufacture and repair aerospace parts with electron beam melting. J. Manuf. Systems. 2016. Vol. 41. P. 65—75.

8. Sames W.J., List F.A., Pannala S., Dehoff R.R., Babu S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016. Vol. 61. Iss. 5. P. 315—360.

9. Murr L.E., Gaytan S.M., Ramireza D.A., Wicker R.B. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J. Mater. Sci. Technol. 2012. Vol. 28 (1). P. 1—14.

10. Baudana G., Biamino S., Ugues D., Lombardi M., Fino P., Pavese M., Badini C. Titanium aluminides for aerospace and automotive applications processed by electron beam melting: Contribution of politecnico di torino. Met. Powder Rep. 2016. Vol. 71 (3). P. 193—199.

11. Logacheva A.I., Sentyurina Zh.A., Logachev I.A. Additivnye tekhnologii proizvodstva otvetstvennykh izdelii iz metallov i splavov (obzor) [Additive technologies for production of critical products from metals and alloys (review)]. Perspektivnye materialy. 2015. No. 4. P. 5—16.

12. Murr L.E., Gaytan S.M. Electron beam melting. Compr. Mater. Process. 2014. Vol. 10. P. 135—161.

13. Gong X., Anderson T., Chou K. Review on powder-based electron beam additive manufacturing technology. Manufact. Rev. 2014. No. 1 (2). P. 11—23.

14. Gaytan S.M., Murr L.E., Martinez E., Martinez J.L., Machado B.I., Ramirez D.A., Medina F., Collins S., Wicker R.B. Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A. 2010. Vol. 41. P. 3216—3227.

15. Deng D., Moverare J., Peng R.L., Söderberg H. Microstructure and anisotropic mechanical properties of EBM manufactured Inconel 718 and effects of post heat treatments. Mater. Sci. Eng. A. 2017. Vol. 693. P. 151—163.

16. Kirka M.M., Medina F., Dehoff R., Okello A. Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process. Mater. Sci. Eng. A. 2017. Vol. 680. P. 338—346.

17. Yu P., Qian M., Tomus D., Brice C.A., Schaffer G.B., Muddle B.C. Electron beam processing of aluminium alloys. Mater. Sci. Forum. 2009. Vol. 618—619. P. 621—626.

18. Loeber L., Biamino S., Ackelid U., Sabbadini S., Epicoco P., Fino P., Eckert J. Comparison of selective laser and electron beam melted titanium aluminides. In: Solid freeform fabrication proceedings: 22nd Intern. Symp. Austin: Univ. of Texas, 2011. P. 547—556.

19. Attar E. Simulation of selective electron beam melting processes. Sarabrucca: VDM Publ., 2011.

20. Dovbysh V.M., Zabednov P.V., Zlenko M.A. Additivnye tekhnologii i izdeliya iz metalla [Additive technologies and metal products]. Bibliotechka liteishchika. 2014. No. 8—9. P. 14—71.

21. GOST 19807-91. Titan i splavy titanovye deformiruemye. Marki [Titanium and titanium alloys deformable. Stamps].

22. International Standardisation Organisation: ISO 13320 : 2009. Particle size analysis — Laser diffraction methods.

23. GOST 19440-94. Poroshki metallicheskie. Opredelenie nasypnoi plotnosti. 1. Metod s ispol’zovaniem voronki [Metallic powders. Determination of bulk density. Pt. 1. Method using a funnel].

24. GOST 20899-98. Poroshki metallicheskie. Opredelenie tekuchesti s pomoshch’yu kalibrovannoi voronki (pribora Kholla) [Metallic powders. Determination of fluidity with a calibrated funnel (Hall device)].

25. GOST 26492-85. Prutki katanye iz titana i titanovykh splavov. Tekhnicheskie usloviya [Rolled rods made of titanium and titanium alloys. Technical specifications].

26. GOST 1497-84. Metally. Metody ispytanii na rastyazhenie [Metals. Methods of tensile testing].


Review

For citations:


Timofeev A.N., Logacheva A.I. FROM METALLURGY OF GRANULES TO ADDITIVE TECHNOLOGIES. Izvestiya. Non-Ferrous Metallurgy. 2018;(3):84-94. (In Russ.) https://doi.org/10.17073/0021-3438-2018-3-84-94

Views: 909


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)