FUNDAMENTALS OF WEAR-RESISTANT COATING PRODUCTION FROM CHROMIUM CARBIDE POWDER MIXTURE WITH BINDER METAL BY EXPLOSIVE COMPACTION
https://doi.org/10.17073/0021-3438-2018-3-68-83
Abstract
The article presents experimental data on explosive compaction of chromium carbide (Cr3C2) powder mixtures with metals (Ti, Ni, Cu) provided with theoretical explanations. These data were used as a basis for stating science-based principles of composition selection and technology development to produce antifriction wear-resistant chromium carbide hard alloys and coatings by explosion. Explosive compaction of powder mixtures was carried out according to a scheme using a normally incident plane detonation wave in a wide range of loading parameters (powder heating temperature in shock waves varied from 200 to1000 °Cand maximum shock compression pressure varied from 4 to 16 GPa during experiments). Phase transformation analysis was carried out by the numerical thermodynamic modeling of phase equilibrium using the Thermo-Calc software. Microstructure, chemical and phase compositions were studied using optical («Axiovert 40МАТ» by CarlZeiss,Germany), scanning («Versa 3D» and «Quanta 3D FEG» byFEI,USA), transmission («BS 540» byTesla,Czech Republic, «Titan 80-300» and «Tecnai G2 20F» byFEI,USA) electron microscopes and «Solver Pro» atomic force microscope (LLC «NT-MDT», Zelenograd). Temperature stability and oxidation resistance at elevated temperatures of the materials obtained by explosion was studied using thermogravimetric analysis (TGA) using the «STA 449 F3 Jupiter» instrument (NETZSCH, Germany) in the synthetic air environment when heated to1500 °C. Tribological tests were carried out on the MI-1M friction machine (MEZIMiV,Moscow) according to the pin-on-ring scheme with plunging in distilled water environment. The mechanisms of consolidation and formation of strong boundaries between powder material particles during explosive compaction are described. It is shown that hard alloys of chromium carbide with titanium bond obtained by explosion retain their phase compositions without any changes and resist to oxidation up to600 °C, and also have significantly better anti-friction properties and wear resistance than the SGP-0,5 and KHN-20 materials used in water-lubricated friction couples until the present time.
About the Authors
A. V. KrokhalevRussian Federation
Dr. Sci. (Tech.), dean of Structural materials technology faculty
400005, Russia, Volgograd, Lenina ave., 28
V. O. Kharlamov
Russian Federation
Cand. Sci. (Tech.), lead engineer of Shared Equipment Center
400005, Russia, Volgograd, Lenina ave., 28
S. V. Kuzmin
Russian Federation
Dr. Sci. (Tech.), prof., Department of welding equipment and technology, vice-rector
400005, Russia, Volgograd, Lenina ave., 28
V. I. Lysak
Russian Federation
Dr. Sci. (Tech.), prof., acad. of RAS, head of the Department «Equipment and technology of welding production», rector of VSTU
400005, Russia, Volgograd, Lenina ave., 28
References
1. Zum Gahr K.H. Microstructure and wear of materials. Vol. 10. Amsterdam: Elsevier, 1987.
2. Wang D.-Y., Weng K.-W., Chang C.-L., Ho W.-Y. Synthesis of Cr3C2 coatings for tribological applications. Surf. Coat. Technol. 1999. No. 120—121. P. 622—628.
3. Li J.-F., Huang J.-Q., Zhang Y.-F., Ding C.-X. Tribological properties of plasma-sprayed coatings under waterlubricated sliding. J. Inorg. Mater. 1998. No. 13. P. 519— 520.
4. Krokhalev A.V., Kharlamov V.O., Lysak V.I., Kuz’min S.V. Friction and wear on hard alloy coatings of the Cr3C2—Ti system over silicified graphite in water. J. Mater. Sci. 2017. Vol. 52. Iss. 17. P. 10261—10272.
5. Groover M.P. Fundamentals of modern manufacturing: Materials, processes and systems. 4th ed. Danvers: John Wiley & Sons, Inc., 2010.
6. Al’tshuler L.V., Trunin R.F., Urlin V.D., Fortov V.E., Funtikov A.I. Razvitie v Rossii dinamicheskikh metodov issledovanii vysokikh davlenii [Development of high-pressure dynamical measurement techniques in Russia]. Uspekhi fizicheskikh nauk. 1999. Vol. 169. No. 3. P. 323—344.
7. Rogozin V.D. Vzryvnaya obrabotka poroshkovykh materialov [Explosive treatment of powders materials]. Volgograd: VolgGTU, 2002.
8. Pruemmer R.A., Balakrishna Blat T., Siva Kumar K., Hokamoto K. Explosive compaction of powders and composites. Science Publishers, 2006.
9. Lysak V.I., Krokhalev A.V., Kuz’min S.V., Rogozin V.D., Kaunov A.M. Pressovanie poroshkov vzryvom [Explosive pressing of powders]. Moscow : Mashinostroenie, 2015.
10. Meyers M. Shock waves: equations of state, in dynamic behavior of materials. N.Y.: John Wiley and Sons, Inc., 1994.
11. Lee S.H., Hokamoto K. WC/Co coating on a mild steel substrate through underwater shock compaction using a self combustible material layer. Mater. Trans. 2007. Vol. 48. No. 1. P. 80—83.
12. Yakovlev I.V., Ogolikhin V.M., Shemelin S.D. Vzryvnoe izgotovlenie metallokeramicheskikh zashchitnykh konteinerov [Explosive manufacture of metal-ceramic protective containers]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2012. Vol. 14. P. 55—60.
13. Buzyurkin A.E., Kraus E.I., Lukyanov Ya.L. Explosive compaction of WC + Co mixture by axisymmetric scheme. J. Phys.: Conf. Ser. 2015. Vol. 653. No. 1. P. 012036.
14. Bondar’ M.P., Nesterenko V.F. Deformatsii na kontaktakh i kriterii obrazovaniya soedineniya pri impul’snykh vozdeistviyakh [Deformations on contacts and criteria for the formation of a compound under impulse influences]. Fizika goreniya i vzryva. 1991. Vol. 27. No. 3. P. 103—117.
15. Staver А.М. Metallurgical effects under shock compression of powder materials. In: Shock waves and high-strainrate phenomena in metals. Concepts and applications. Eds. M.A. Meyers, L.E. Murr. N.Y.; London: Plenum Press, 1981. Р. 865—880.
16. Bondar’ M.P. Kompaktirovanie vzryvom: tip mikrostruktury kontaktnykh granits, sozdannyi pri obrazovanii prochnoi svyazi [Blast compacting: the type of contact boundary microstructure created in the formation of a strong bond]. Fizika goreniya i vzryva. 2004. Vol. 40. No. 4. P. 131—140.
17. Bondar’ M.P., Obodovskii E.S., Psakh’e S.G. Izuchenie osobennostei mikrostruktury zony kontaktnogo vzaimodeistviya chastits poroshkov pri dinamicheskom pressovanii [The study of the microstructure of the contact zone of powder particles during dynamic pressing]. Fizicheskaya mezomekhanika. 2004. Vol. 7. No. 3. P. 17—23.
18. Lysak V.I., Kuz’min S.V. Svarka vzryvom [Explosion welding]. Мoscow: Mashinostroenie, 2005.
19. Karakozov E.S. Soedinenie metallov v tverdoi faze [Metals in the solid phase]. Мoscow: Metallurgia, 1976.
20. Krasulin Yu.L. Nazarov G.Z. Mikrosvarka davleniem [Pressure microwelding]. Moscow: Metallurgia, 1976.
21. Krokhalev A.V., Avdeyuk O.A., Prikhod’kov K.V., Savkin A.N., Kuz’min S.V., Lysak V.I. Explosive coating with hard alloys. Russ. Eng. Res. 2014. No. 34. P. 85—88.
22. Kaunov A.M., Bukin V.M. Explosive application of coatings. Sov. Powder Metall. Met. Ceram. 1984. Vol. 23. No. 1. P. 42—45.
Review
For citations:
Krokhalev A.V., Kharlamov V.O., Kuzmin S.V., Lysak V.I. FUNDAMENTALS OF WEAR-RESISTANT COATING PRODUCTION FROM CHROMIUM CARBIDE POWDER MIXTURE WITH BINDER METAL BY EXPLOSIVE COMPACTION. Izvestiya. Non-Ferrous Metallurgy. 2018;(3):68-83. (In Russ.) https://doi.org/10.17073/0021-3438-2018-3-68-83