Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

INVESTIGATION OF POSSIBILITY TO PRODUCE HIGH-STRENGTH BORON ALUMINUM SHEETS WITHOUT HOMOGENIZATION AND QUENCHING OPERATIONS

https://doi.org/10.17073/0021-3438-2018-3-59-67

Abstract

Al–Cu–Mn (Zr) alloys feature high strength and processability without any thermal treatment operations. Al–2%Cu–1,5%Mn–2%B and Al–2%Cu–1,5%Mn–0,4%Zr–2%B alloys were obtained in order to investigate the possibility of producing a aluminum boroncontaining alloy in the form of high-strength sheet rolled stock without thermal treatment. Melting was performed in the RELTEK induction furnace with intense melt stirring to eliminate sedimentation of boride refractory particles. Melting temperature was 950– 1000 °С. Melt was poured into 40×120×200 mm graphite casting molds. Calculation methods (Thermo-Calc) were used to demonstrate that manganese forms complex borides with aluminum and zirconium at a melting temperature while there is enough manganese in liquid and there is practically no zirconium left. Experimental methods (electronic scanning microscopy and electron microprobe analysis) proved the formation of the complex AlB2Mn2 boride, however, manganese remained in a solid solution is enough to form the Al20Cu2Mnphase particles in the amount up to 7 wt.%. In the alloy with zirconium, boron stimulates primary Al3Zr crystal separation and, therefore, zirconium content left in the aluminum solid solution is not sufficient for hardening. It is shown that it is possible to produce thin-rolled steel with a thickness of less than 0,3 mm with uniformly distributed clusters of the boride phase with a particle size of less than 10 μm. A high level of strength up to 543 MPa is reached without the use of hardening and aging due to the precipitation of Al20Cu2Mn3 phase dispersions during hot deformation (=450 °C).

About the Authors

K. Yu. Chervyakova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Postgraduate student, engineer of the Department of pressure metal and alloy treatment 

119049, Russia, Moscow, Leninkii pr., 4



N. A. Belov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), professor, сhief researcher of the Department of pressure metal and alloy treatment 

119049, Russia, Moscow, Leninkii pr., 4



M. E. Samoshina
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), associate prof., senior researcher of the Department of pressure metal and alloy treatment

119049, Russia, Moscow, Leninkii pr., 4



A. A. Yakovlev
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), head of section of Engineering Centre «Foundry technologies and materials» 

119049, Russia, Moscow, Leninkii pr., 4



References

1. Mohantya R.M., Balasubramaniana K., Seshadrib S.K. Boron carbide-reinforced alumnium 1100 matrix composites: Fabrication and properties. Mater. Sci. Eng. A. 2008. Vol. 498. Iss. 1—2. Р. 42—52.

2. Savas O., Kayikci R. Production and wear properties of metal matrix composites reinforced with boride particles. Mater. Design. 2013. Vol. 51. P. 641—647.

3. Xin Yan Yue, Jian Jun Wang, Shang Yong Yu, Wei Wang, Hong Qiang Ru. Microstructure and mechanical properties of a three-layer B4C/Al—B4C/TiB2—B4C composite. Mater. Design. 2013. Vol. 46. P. 285—290.

4. Tjong S.C., Ma Z.Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. А. 2000. Vol. 29. P. 49—113.

5. Suárez O.M. Precipitation hardening of a novel aluminum matrix composite. Mater. Charact. 2002. Vol. 49. Iss. 2. P. 187—191.

6. Fanchini G., Gupta V., Mann A.B., Chhowalla M. In situ monitoring of structural changes in boron carbide under electric fields. J. Am. Ceram. Soc. 2008. Vol. 91. Iss. 8. P. 2666—2669.

7. Samoshina M.E., Chervyakova K.Yu., Aleshchenko A.S., Mirzomustakimov M.M. Struktura, mekhanicheskie svoistva i deformatsionnaya sposobnost’ slitkov i listovogo prokata splava Al—6%Cu—2%B [Structure, mechanical properties and deformation capacity of ingots and sheet products of the alloy]. Tsvetnye metally. 2016. No. 12. Р. 78—84.

8. Chervyakova K.Yu., Samoshina M.E., Belov N.A. Selection of an aluminum matrix composition for obtaining the heat treatable boron-aluminum alloys. Non-Ferr. Met. 2016. No. 2. P. 34—40.

9. Talamantes-Silvaa M., Rodríguezb A., Talamantes-Silvab J., Valtierrab S., Colása R. Characterization of an Al—Cu cast alloy. Mater. Charact. 2008. Vol. 59. P. 1434—1439.

10. Bo Lin, Wei Wen Zhang, Zhao Hui Lou, Da Tong Zhang, Yuan Yuan Li. Comparative study on microstructures and mechanical properties of the heattreated Al—5,0Cu— 0,6Mn—xFe alloys prepared by gravity die casting and squeeze casting. Mater. Design. 2014. Vol. 59. P. 10—18.

11. Belov N.A., Alabin A.A. Material na osnove alyuminiya (ALTEK) [Aluminum-based material (ALTEK)]: Pat. 2287600 (RF). 2006.

12. Alabin A.N., Belov N.A., Tabachkova N.Yu., Akopyan T.K. Heat resistant alloys of Al—Zr—Sc system for electrical applications: analysis and optimization of phase composition. Non-Ferr. Мet. 2015. No. 2. Р. 36—40.

13. Lai J., Zhang Z., Chen X.-G. The thermal stability of mechanical properties of Al—B4C composites alloyed with Sc and Zr at elevated temperatures. Mater. Sci. Eng. А. 2012. Vol. 532. P. 462—470.

14. Neuberta V., Smola B, Stul’kov’a B., Bakkar A., Reuter J. Microstructure, mechanical properties and corrosion behaviour of dilute Al—Sc—Zr alloy prepared by powder metallurgy. Mater. Sci. Eng. A. 2007. Vol. 464. Iss. 1—2. Р. 358—364.

15. Srinivasarao B., Suryanarayana C., Oh-ishi K., Hono K. Microstructure and mechanical properties of Al—Zr nanocomposite materials. Mater. Sci. Eng. A. 2009. Vol. 518. Iss. 1—2. P. 100—107.

16. Toleulova A.R. Teoreticheskie i eksperimental’nye issledovaniya fazovykh i strukturnykh prevrashchenii v alyuminievykh splavakh novogo pokoleniya na baze sistemy Al—Cu—Mn—Zr [Theoretical and experimental studies of phase and structural transformations in aluminum alloys of a new generation based on the Al—Cu—Mn—Zr system]: Dissertation of PhD. Almaty: Kazakh National Research Technical University n.a. K.I. Satpaev (KazNRTU), 2013.

17. GOST 11069-2001. Alyuminii pervichnyi. Marki [State Standard 11069-2001. Aluminum primary. Stamps]. Moscow: Izdatel’stvo standartov, 2002.

18. GOST 859-2001. Med’. Marki [State Standard 859-2001. Copper. Stamps]. Minsk: Int. sovet po standartizatsii, metrologii i sertifikatsii. Moscow: Izdatel’stvo standartov, 2003.

19. Informatsiya s saita [Information from the site] www.thermocalc.com (accessed: 24.04.2017).

20. GOST 1497-84. Metally. Metody ispytanii na rastyazhenie [State Standard 1497-84. Metals. Methods of tensile testing]. Moscow: Izdatel’stvo standartov, 1997.

21. GOST 11701-84. Metally. Metody ispytanii na rastyazhenie tonkikh listov i lent [State Standard 11701-84. Metals. Methods for tensile testing of thin sheets and tapes]. Moscow: Izdatel’stvo standartov, 1985.

22. Samoshina M.E., Belov N.A., Alabin A.N., Chervyakova K.Yu. Vliyanie medi i magniya na strukturu i fazovyi sostav slitkov boralyuminiya [Effect of copper and magnesium on the structure and phase composition of boron aluminum ingots]. Metally. 2016. No. 1. Р. 86—92.

23. Petzow G., Effenberg G. (Ed.) Ternary alloys: A comprehensive compendium of evaluated constitutional data and phase diagrams. Wiley-VCH, 1990. Vol. 3.


Review

For citations:


Chervyakova K.Yu., Belov N.A., Samoshina M.E., Yakovlev A.A. INVESTIGATION OF POSSIBILITY TO PRODUCE HIGH-STRENGTH BORON ALUMINUM SHEETS WITHOUT HOMOGENIZATION AND QUENCHING OPERATIONS. Izvestiya. Non-Ferrous Metallurgy. 2018;(3):59-67. (In Russ.) https://doi.org/10.17073/0021-3438-2018-3-59-67

Views: 554


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)