Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

RATIONAL PROCESSING OF REFRACTORY COPPER-BEARING ORES

https://doi.org/10.17073/0021-3438-2018-3-6-18

Abstract

The paper presents the results obtained when studying material compositions of four samples of refractory copper-bearing ores from the Uzelga deposit along with technological solutions to improve their processing parameters. The refractoriness of ores is associated with a thin dissemination (up to a micron size) and close intergrowth of ore and rock minerals. Ferrous sulfides are represented by a wide range of minerals: pyrite, marcasite and their variety melnikovite, arsenic pyrite and arsenopyrite; sooty melnikovite has a higher flotation activity. The reduction of iron sulfides from 89 to 29 % is followed by a proportional increase of easy-floatable rock minerals to 45 % and clay to 9 %. These properties make these sulfides difficult to process (float) and maintain ore refractoriness. The content of copper sulfides in ore samples varies from 3,32 to 7,29 %; the relative fraction of copper sulfide in a form of tennantite in different deposit samples varies from 29 to 93 %. Copper is also present as chalcopyrite and bornite. The best flotation activity of tennantite can be seen in neutral and weak acid media in contrast with standard flotation mode for chalcopyrite and bornite with butyl xanthate in a high-alkaline calcareous medium. Free grains of copper minerals can be selectively extracted into the intermediate flotation copper concentrates when grinding maximum 60 % of the –71-μm class. The technology of flotation in a low-alkaline medium is developed for refractory copper-bearing ores with variable tennantite content using the M-TF selective sulfhydryl collector in intermediate copper flotations and copper concentrate upgrading cycle; aeration used to suppress melnikovite flotation activity makes it possible to achieve 80 % copper recovery into conditioned copper concentrate. Bornite, tennantite, chalcopyrite and sphalerite disseminated in pyrite make it rational to obtain copper-pyrite, copper-zinc-pyrite products with their yield up to 12 % for pyroand hydrometallurgical processing.

About the Authors

V. A. Ignatkina
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of enrichment and processing of minerals and technogenic raw materials (EPM&TRM) 

119049, Russia, Moscow, Leninskii pr., 4



V. A. Bocharov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Dr. Sci. (Tech.), prof. of the Department of EPM&TRM materials (EPM&TRM)

119049, Russia, Moscow, Leninskii pr., 4



A. R. Makavetskas
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Leading engineer of Centre «Resource-saving technology of processing of mineral raw materials» 

119049, Russia, Moscow, Leninskii pr., 4



A. A. Kayumov
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Postgraduate student, Department of EPM&TRM

119049, Russia, Moscow, Leninskii pr., 4



D. D. Aksenova
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Postgraduate student, Department of EPM&TRM

119049, Russia, Moscow, Leninskii pr., 4



L. S. Khachatryan
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Cand. Sci. (Tech.), leading engineer of Department of EPM&TRM

119049, Russia, Moscow, Leninskii pr., 4



Yu. Yu. Fishchenko
National University of Science and Technology (NUST) «MISIS»
Russian Federation

Engineer of Centre «Resource-saving technology of processing of mineral raw materials» 

119049, Russia, Moscow, Leninskii pr., 4



References

1. Petrus H.T.B.M., Hirajima T., Sasaki K., Okamoto H. Effects of sodium thiosuphate on chalcopyrite and tennantite: An insight for alternative separation technique. Int. J. Miner. Process. 2012. Vol. 102—103. P. 116— 123.

2. Asbjornsson J., Kelsall G.H., Vaughan D.J., Pattrick R.A.D., Wincott P.L., Hope G.A. Electrochemical and surface analytical studies of tennantite in acid solution. J. Electroanal. Chem. 2004. Vol. 570. P. 145—152.

3. Himawan T.B.M. Petrus, Tsuyoshi Hirajima, Keiko Sasaki, Hideyuki Okamoto. Effects of pH and dietil ditiophosphate (DTF) treatment on chalcopyrite and tennantite surfaces observed using atomic force microscopy (AFM). Colloid Surf. A: Phys. Eng. Aspects. 2011. Vol. 389. P. 266—273.

4. Spiridonov E.M., Filimonov S.V., Kulikova I.M., Naz’mova G.N., Krivitskaya N.N., Bryzgalov I.A., Guseva E.V., Korotaeva N.N. Mineraly gruppy bleklykh rud — indikatory rudogeneza [Indicators of ore genesis classification of minerals of the fahlore group]. In: Problemy geologii rudnykh mestorozhdenii, mineralogii, petrologii i geokhimii [Problems of geology of ore fields, mineralogy and geochemistry]. Moscow: IGEM RAN, 2008. P. 356—359.

5. Koryukin B.M., Shtern E.K., Semidolov S.Yu. Vzaimosvyaz’ struktury i sostava sul’fidov kolchedannykh mestorozhdenii s tekhnologiei ikh pererabotki: Rol’ tekhnologicheskoi mineralogii v razvitie syr’evoi bazy [Correlation of the structure and composition of sulfide deposits with the technology of their processing]. In: Rol’ tekhnologicheskoi mineralogii v razvitii syr’evoi bazy SSSR [Role of technological mineralogy in development of a source of raw materials of the USSR]. Leningrad: B.I., 1983.

6. Pshenichnyi G.N. Bleklye rudy kolchedannykh mestorozhdenii Yuzhnogo Urala i nekotorye puti povysheniya tekhnologicheskikh pokazatelei obogashcheniya rud [Fahl pres of pyrite deposits in the South Urals and ways to increase the technological indexes of ore]. In: Tekhnologicheskaya mineralogiya promyshlennykh tipov mestorozhdenii [Technological mineralogy of industrial types of field]. Leningrad: Nauka, 1967. P. 85—90.

7. Bocharov V.A., Ignatkina V.A., Kayumov A.A. Flotatsionnoe kontsentrirovanie na osnove raspredeleniya mineralov po krupnosti v skhemakh flotatsii massivnykh kolchedannykh rud tsvetnykh metallov [Fraction concentration on the basis of size distribution of minerals in the schemes of flotation of massive pyritic ores of non-ferrous metals]. Tsvetnye metally. 2016. No. 6. P. 21—28.

8. Izoitko V.M. Tekhnologicheskaya mineralogiya i otsenka rud [Technological mineralogy and ore evaluation]. Sankt-Peterburg: Nauka, 1997.

9. Ignatkina V.A., Bocharov V.A. Osobennosti flotatsii raznovidnostei sul’fidov medi i sfalerita kolchedannykh rud [Features of flotation of various copper sulfides and sphalerite contained in sulfide ore]. Gornyi zhurnal. 2014. No. 12. P. 75—79.

10. Peng Y., Grano S., Fornasiero D., Ralston J. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int. J. Miner. Process. 2003. Vol. 69. No. 1/4. P. 87—100.

11. Xumeng Chen, Yongjun Peng, Dee Bradshaw. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng. 2014. Vol. 58. P. 64—72.

12. Clement Owusu, Susana Brito e Abreu, William Skinner, Jonas Addai-Mensah, Massimiliano Zanin. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Miner. Eng. 2014. Vol. 55. P. 87—95.

13. Gonçalves K.L.C., Andrade V.L.L., Peres A.E.C. The effect of grinding conditions on the flotation of a sulphide copper ore. Miner. Eng. 2003. Vol. 16. Iss. 11. P. 1213— 1216.

14. Bocharov V.A., Ignatkina V.A. Problemy razdeleniya mineral’nykh kompleksov pri pererabotke upornykh massivnykh rud tsvetnykh metallov [Problems of separation of mineral complexes in the time of processing of massive refractory ores of non-ferrous metals]. Tsvetnye metally. 2014. No. 5. P. 16—23.

15. Mitrofanov S.I. Selektivnaya flotatsiya [Selective flotation]. Moscow: Nedra, 1964.

16. Bogdanov O.S., Maksimov I.I., Podnek A.K., Yanis N.A. Teoriya i tekhnologiya flotatsii rud [Theory and technology of ore flotation]. Moscow: Nedra, 1990.

17. Ignatkina V.A., Bocharov V.A. O vzaimodeistvii komponentov f lotatsionnoi sul’fidnoi pul’py [On regularities observed in formation of liquid phase composition in flotation sulfide pulp]. Gornyi zhurnal. 2007. No. 12. P. 78—83.

18. Panshin A.M., Mamyachenkov S.V., Tropnikov D.L., Anisimova O.S., Rogozhnikov D.A. Investigation into regularities of leaching sulfated cinders of roasting copper-zinc middlings. Russ. J. Non-Ferr. Metals. 2017. Vol. 58. No. 4. P. 345—350.

19. Smith L.K., Bruckard W.J. The separation of arsenic from copper in a Northparkes copper—gold ore using controlled-potential flotation. Int. J. Miner. Process. 2007. Vol. 84. P. 15—24.

20. Fornasiero D., Fullston D., Li C., Ralston J. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Int. J. Miner. Process. 2001. Vol. 61. P. 109—119.

21. Long G., Peng Y., Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Miner. Eng. 2012. Vol. 36—38. P. 179—186.

22. Sasaki K., Takatsugi K., Ishikura K., Hirajima T. Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy. 2010. Vol. 100. P. 144—151.


Review

For citations:


Ignatkina V.A., Bocharov V.A., Makavetskas A.R., Kayumov A.A., Aksenova D.D., Khachatryan L.S., Fishchenko Yu.Yu. RATIONAL PROCESSING OF REFRACTORY COPPER-BEARING ORES. Izvestiya. Non-Ferrous Metallurgy. 2018;(3):6-18. (In Russ.) https://doi.org/10.17073/0021-3438-2018-3-6-18

Views: 810


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)