EFFECT OF SILICON ADDITION ON SPECIFIC ELECTRICAL RESISTIVITY AND HARDNESS OF Al–1%Fe–0,3%Zr ALLOY
https://doi.org/10.17073/0021-3438-2018-2-50-58
Abstract
Calculation methods and Thermo-Calc software were used to analyze isothermal sections of the Al–Fe–Si–Zr alloy diagram at 450 °C and 600 °C, and polythermal sections at the concentrations of silicon up to 2 wt.% and zirconium up to 1 wt.%. It has been shown that a favorable phase composition consisting of an aluminum solid solution (Al) and an Al8Fe2Si phase with zirconium contained in a solid solution (Al) can be achieved under equilibrium conditions when making a cast section at silicon concentrations of 0,27–0,47 wt.%. In order to implement the process under non-equilibrium conditions of the abovementioned structural components and to ensure Zr inclusion in the (Al) composition, test ingots were made at an increased cooling rate (over 10 K/s). The metallographic analysis of the sample cast structure revealed the desired structure at 0,25 wt.% of Si and 0,3 wt.% of Zr in the alloy. The Al–1%Fe–0,3%Zr–0,5%Si alloy microstructure also contains the (Al) + Al8Fe2Si eutectic, but it is observed that the Al8Fe2Si phase is partially transformed into Al3Fe in step annealing at 600 °C. The structure of the alloy with 0,25 wt.% of silicon in the T600 state contains fragmented particles of the (Al) + Al8Fe2Si degenerate eutectic along the boundaries of dendritic cells. It has been found that the Si : Fe = 1 : 2 ratio in the alloy has a positive effect on its mechanical properties, especially hardness, without any significant conductivity reduction in the annealing process. This effect is explained by compact morphology formation in the structure of Al8Fe2Si phase particles. Moreover, silicon accelerates solid solution decomposition in terms of zirconium, as shown by the experimental graphs of hardness and resistivity dependence on the annealing step. Using the optimization function for the given hardness and resistivity parameters, the Al–1%Fe– 0,3%Zr–0,25%Si alloy demonstrated the best set of properties in the T450 state.
About the Authors
N. A. BelovRussian Federation
Dr. Sci. (Tech.), Prof., Department of foundry technologies and material art working (FT&MAW), Chief engineer, Department of metal deformation process
119049, Russia, Moscow, Leninsky pr., 4
N. O. Korotkova
Russian Federation
Postgraduate student, Department of metal deformation process
A. N. Alabin
Russian Federation
Project manager of technical management
121096, Russia, Moscow, Vasilisyi kozhinoy ul, 1
S. S. Mishurov
Russian Federation
Chief engineer, Department of metal deformation process
References
1. Воронцова Л.А. Алюминий и алюминиевые сплавы в электротехнических изделиях. М.: Энергия, 1971; Vorontsova L.A. Alyuminii i alyuminievye splavy v elektrotekhnicheskikh izdeliyakh [Aluminium and aluminum alloys in electrical products]. Moscow: Energiya, 1971.
2. Белов Н.А., Алабин А.Н., Прохоров А.Ю. Влияние добавки циркония на прочность и электросопротивление холоднокатаных алюминиевых листов. Изв. вузов. Цвет. металлургия. 2009. No. 4. С. 42—47; Belov N.A., Alabin A.N., Prohorov A. Yu. Vliyanie dobavki cirkoniya na prochnost i ehlektrosoprotivlenie holodnokatanyh alyuminievyh listov [The influence of zirconium addition on the strength and electrical resistance of cold-rolled aluminum sheets]. Izv. vuzov. Tsvet. metallurgiya. 2009. No. 4. P. 42—47.
3. Alabin A., Belov N. Effect of iron and silicon on strength and electrical resistivity of Al—Zr wire alloys. In: Proc. 13-th Inter. Conf. on Aluminum Alloys. (ICAA13). Pittsburgh: Wiley, 2012. P. 1539—1544.
4. Алабин А.Н., Белов Н.А., Короткова Н.О., Самошина М.Е. Влияние отжига на электросопротивление и упрочнение низколегированных сплавов системы Al— Zr—Si. МИТОМ. 2016. No. 9. C. 16—20; Alabin A.N., Belov N.A., Korotkova N.O., Samoshina M.E. Vliyanie otzhiga na ehlektrosoprotivlenie i uprochnenie nizkolegirovannyh splavov sistemy Al—Zr—Si [The effect of annealing on electrical resistivity and hardening of low-alloy alloys of the Al—Zr—Si system]. MITOM. 2016. No. 9. P. 16—20.
5. Booth-Morrison C., Mao Z., Diaz M., Dunand D.C., Wolverton C., Seidman D.N. Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al—Sc—Zr alloys. Acta Mater. 2012. No. 60. P. 4740—4752.
6. Liu Ya., Tang M., Wu Ch., Wang J., Su X. Progress on phase equilibria of the Al—Si—Zr system at 700 and 900 °C. J. Alloys and Compounds. 2017. No. 693. P. 357—365.
7. Gao T., Ceguerra A., Breen A., Liu X., Wu Y., Ringer S. Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al— (Si—)Zr alloys. J. Alloys and Compounds. 2016. No. 674. P. 125—130.
8. Энтони У.У., Элиот Ф.Р., Болл М.Д. Алюминий. Свойства и физическое металловедение: Справ. изд. Под ред. Дж.Е. Хэтча. Пер. с англ. М.: Металлургия, 1989; Entoni U.U., Eliot F.R., Boll M.D. Alyuminii. Svoistva i fizicheskoe metallovedenie [Aluminum. Properties and physical metallurgy]: Reference book (Ed. J.E. Hatch). Moscow: Metallurgiya, 1989.
9. Belov N.A., Aksenov A.A., Eskin D.G. Iron in aluminum alloys: impurity and alloying element. London: Fransis and Tailor, 2002.
10. Uliasz P., Knych T., Mamala A., Smyrak B. Investigation in properties’ design of heat resistant Al—Zr—Sc alloy wires assigned for electrical application’ in aluminum alloys: their physical and mechanical properties (Eds. J. Hirsch. B. Scrotzki, G. Gottstein). In: Proc. 11-th Inter. Conf. on Aluminum Alloys (ICAA11). Germany, Aahen, 2008. P. 248—255.
11. Deschamp A., Guyo P. In situ small-angle scattering study of the precipitation kinetics in an Al—Zr—Sc alloy. Acta Mater. 2007. No. 55. P. 2775—2783.
12. Booth-Morrison C., Seidman D. N., Dunand D.C. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al—Zr—Sc—Si alloys. Acta Mater. 2012. No. 60. P. 3643—3654.
13. Зadirli E., Tecer H., Sahin M., Yэlmaz E., Kirindi T., Gьndьz M. Effect of heat treatments on the microhardness and tensile strength of Al—0,25 wt.% Zr alloy. J. Alloys and Compnd. 2015. No. 632. P. 229—237.
14. Guo C., Du Z., Li C., Zhang B., Tao M. Thermodynamic description of the Al—Fe—Zr system. Computer Coupling of Phase Diagrams and Thermochemistry. 2008. No. 32 P. 637—649.
15. Moustafa M.A. Effect of iron content on the formation of β-Al5FeSi and porosity in Al—Si eutectic alloys. J. Mater. Proces. Technol. 2009. No. 209. P. 605—610.
16. Mahmoud A.E., Mahfouz M.G., Gad-Elrab H.G. Influence of zirconium on the grain refinement of Al 6063 alloy. J. Eng. Res. Appl. 2014. P. 188—194.
17. Беспалов В.М. Исследование совмещенных процессов обработки сплавов системы Al—Zr для получения длинномерных деформированных полуфабрикатов электротехнического назначения: Авторефер. дис. канд. техн. наук. Красноярск: СФУ, 2014; Bespalov V.M. Issledovanie sovmeshchennyh processov obrabotki splavov sistemy Al—Zr dlya polucheniya dlinnomernyh deformirovannyh polufabrikatov ehlektrotekhnicheskogo naznacheniya [Research of the combined processes of processing of alloys of the Al—Zr system for obtaining long-dimensioned deformed semifinished products of electrotechnical]: Abstr. of Diss. PhD. Krasnoyarsk: SibFU, 2014.
18. Deng Y., Yin Zh., Pan Q., Xu G., Duan Yu., Wang Y. Nano-structure evolution of secondary Al3(Sc1–xZrx) particles during superplastic deformation and their effects on deformation mechanism in Al—Zn—Mg alloys. J. Alloys and Compnd. 2017. No. 695. P. 142—153.
19. Taendl J., Orthacker A., Amenitsch H., Kothleitner G., Poletti C. Influence of the degree of scandium supersaturation on the precipitation kinetics of rapidly solidified Al— Mg—Sc—Zr alloys. Acta Mater. 2016. No. 117. P. 43—50.
20. Lin Y.C., Xia Yu.-Chi., Qiang Jiang Yu., Hua-Min Zhou, Lei-Ting Li. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A. 2013. No. 565. P. 420—429.
21. Muggerud A. Marie F., Mørtsell E. A., Li Ya., Holmestad R. Dispersoid strengthening in AA3xxx alloys with varying Mn and Si content during annealing at low temperatures. Mater. Sci. Eng. A. 2013. No. 567. P. 21—28.
22. Harrington E. The desirability function. Industrial Quality Control. 1965. No. 21. P. 494—498.
Review
For citations:
Belov N.A., Korotkova N.O., Alabin A.N., Mishurov S.S. EFFECT OF SILICON ADDITION ON SPECIFIC ELECTRICAL RESISTIVITY AND HARDNESS OF Al–1%Fe–0,3%Zr ALLOY. Izvestiya. Non-Ferrous Metallurgy. 2018;(2):50-58. (In Russ.) https://doi.org/10.17073/0021-3438-2018-2-50-58