DEVELOPING MODES TO OBTAIN DEFORMED SEMI-FINISHED PRODUCTS FROM EXPERIMENTAL SCANDIUM CONTAINING ALUMINUM ALLOY AND STUDYING THEIR MECHANICAL PROPERTIES
https://doi.org/10.17073/0021-3438-2018-2-43-49
Abstract
The paper demonstrates the urgency of studies focused on creating new Al-Mg alloys doped with scandium and featuring by an advantageous combination of operational and mechanical properties such as weldability, corrosion resistance and sufficient strength. In production conditions, 560×1360×4520 mm flat ingots were obtained from an experimental scandium-containing alloy. They were cut into billets with a maximum thickness of 40 mm and then heat treatment and sheet rolling modes were developed for them and tested. The DUO 330 mill with smooth rolls having an initial diameter of 330 mm and a barrel width of 540 mm was used as rolling equipment. Experimental studies consisting in blank preparation for rolling (homogenization annealing and face milling), hot rolling at 450 °C, cold rolling to a thickness of 3 mm and annealing of cold-deformed semi-finished products at 350 °C for 3 hours allowed making deformed semi-finished products by various drafting patterns at rolling that were subjected to heat treatment. The maximum total degree of deformation during billet rolling to the 3 mm thickness was 92,5 %, and the draw ratio per pass changed from 1,04 to 1,2. The LFM400 400 kN universal test machine as per GOST 1497-84 was used to determine mechanical properties of deformed and annealed semi-finished products of various thicknesses made of an experimental alloy and identify regularities of their changes depending on the total degree of deformation during rolling. It was found that when rolling strips of an experimental scandiumcontaining aluminum alloy the ultimate tensile strength and yield strength of the metal grow, and the percentage elongation decreases with an increase in the total degree of deformation. This corresponds to the general ideas of metal forming theory. The mechanical analysis of semi-finished products showed that the level of strength and plastic properties is quite high, wherein the ultimate tensile strength reaches 453–481 MPa, yield strength – 429–457 MPa, and percentage elongation – 3,8-5,0 % for cold-deformed samples. Annealing made it possible to increase percentage elongation values to 14–16 % at sufficiently high yield strength (up to 277 MPa). The results of the conducted studies were used to develop casting, rolling and annealing modes for making semi-finished products of the Al–Mg alloy sparingly doped with scandium within 0,10–0,14 % that will be used when mastering machining technologies in production.
About the Authors
V. N. BaranovRussian Federation
Cand. Sci. (Eng.), Director, Institute of Non-Ferrous Metals and Material Science
660025, Krasnoyarsk, Krasnoyarskiy rabochiy av., 95
S. B. Sidelnikov
Russian Federation
Dr. Sci. (Eng.), Prof., Head of Metal forming department
E. Yu. Zenkin
Russian Federation
Managing director
665716, Irkutsk region, Bratsk
D. S. Voroshilov
Russian Federation
Cand. Sci. (Eng.), Docent, Metal forming department
References
1. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel’nye elementy — materialy sovremennykh i vysokikh tekhnologii budushchego [Rare metals and rare-earth elements — materials for modern and future high technologies]. Trudy VIAM: Elektronnyi nauchnyi zhurnal. 2013. No. 2. Р. 1.
2. Gorbunov Yu.A. Rol’ i perspektivy redkozemel’nykh metallov v razvitii fiziko-mekhanicheskikh kharakteristik i oblastei primeneniya deformiruemykh alyuminievykh splavov [The role and prospects of rare earth metals in the development of physical-mechanical characteristics and applications of deformable aluminum alloys]. Journ SFU. Tekhnika i tekhnologii. 2015. Vol. 8. No. 5. P. 636 — 645.
3. Malopheyev S., Kulitskiy V., Kaibyshev R. Deformation structures and strengthening mechanisms in an Al— Mg—Sc—Zr alloy. J. Alloys and Compnd. 2017. Vol. 698. P. 957—966.
4. Kang W., Li H.Y., Zhao S.X., Han Y., Yang C.L., Ma G. Effects of homogenization treatments on the microstructure evolution, microhardness and electrical conductivity of dilute Al—Sc—Zr—Er alloys. J. Alloys and Compnd. 2017. Vol. 704. P. 683—692.
5. Roumina R., Sinclair C.W. Recovery kinetics in the presence of precipitates: The softening response of an Al— Mg—Sc alloy. Acta Mater. 2010. Vol. 58. P. 111—121.
6. Krug M.E., Werber A., Dunand D.C., Seidman D.N. Core— shell nanoscale precipitates in Al—0,06at.%Sc microalloyed with Tb, Ho, Tm or Lu. Acta Mater. 2010. Vol. 58. P. 134—145.
7. De Luca A., Dunand D.C., Seidman D.N. Mechanical properties and optimization of the aging of a dilute Al—Sc— Er—Zr—Si alloy with a high Zr/Sc ratio. Acta Mater. 2016. Vol. 119. P. 35—42.
8. Riddle Y.W., Sanders Jr. T.H. A study of coarsening, recrystallization, and morphology of microstructure in Al—Sc—(Zr)—(Mg) alloys. Metal. Mater. Trans. A. 2004. Vol. 35A. P. 341—350.
9. Zhu H., Dahle A.K., Ghosh A.K. Effect of Sc and Zn Additions on microstructure and hot formability of Al— Mg sheet alloys. Metal. Mater. Trans. A. 2009. Vol. 40A. P. 598—608.
10. Shi C., Zhang L., Wu G., Zhang X., Chen A., Tao J. Effects of Sc addition on the microstructure and mechanical properties of cast Al—3Li—1,5Cu—0,15Zr alloy. Mater. Sci. Eng. 2017. Vol. А680. P. 232—238.
11. Pedro Henrique R. Pereiraa, Ying Chun Wang, Yi Huang, Terence G. Langdon. Influence of grain size on the flow properties of an Al—Mg—Sc alloy over seven orders of magnitude of strain rate. Mater. Sci. Eng. 2017. Vol. А685. P. 367—376.
12. Mondol S., Alamb T., Banerjee R., Kumar S., Chattopadhyay K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy. Mater. Sci. Eng. 2017. Vol. А687. P. 221— 231.
13. Li M., Pan Q., Shi Y., Sun X., Xiang H. High strain rate superplasticity in an Al—Mg—Sc—Zr alloy processed via simple rolling. Mater. Sci. Eng. 2017. Vol. А687. P. 298— 305.
14. Buranova Yu., Kulitskiy V., Peterlechner M., Mogucheva A., Kaibyshev R., Divinski S.V., Wilde G. Al3(Sc, Zr) — based precipitates in Al—Mg alloy: Effect of severe deformation. Acta Mater. 2017. Vol. 124. P. 210—224.
15. Ibrokhimov S.Zh., Eshov B.B., Ganiev I.N., Ibrokhimov N.F. Vliyanie skandiya na fiziko-khimicheskie svoistva splava AMg4 [Influence scandium on the physicochemical properties of the alloy AMg4]. Izvestiya Samarskogo nauchnogo tsentra RAN. 2014. Vol. 16. No. 4. P. 256—260.
16. Ibrokhimov S.Zh., Eshov B.B., Ganiev I.N. Okislenie tverdogo alyuminievo-magnievogo splava AMg4, legirovannogo skandiem [Oxidation of a hard aluminum-magnesium alloy AMg4, alloyed with scandium]. Doklady AN Respubliki Tadzhikistan. 2013. Vol. 56. No. 6. P. 472—475.
17. Filatov Yu.A. Razlichnye podkhody k realizatsii uprochnyayushchego effekta ot dobavki skandiya v deformiruemykh splavakh na osnove sistemy Al—Mg—Sc [Various approaches to realization of the strengthening effect resulted from scandium addition made to wrought Al— Mg—Sc system based alloys]. VILS: Tekhnologiya legkikh splavov. 2009. No. 3. P. 42—45.
18. Filatov Yu.A. Deformiruemye splavy na osnove sistemy Al—Mg—Sc [Wrought Al—Mg—Sc system base alloys]. Metallovedenie i termicheskaya obrabotka metallov. 1996. No. 6. P. 33—36.
19. Filatov Yu.A. Deformiruemye Al—Mg—Sc-splavy i vozmozhnye oblasti ikh primeneniya [Deformable Al—Mg— Sc alloys and possible areas of their application]. Perspektivnye materialy. 1996. No. 5. P. 45—49.
20. Kuznetsov G.M., Pobezhimov P.P., Nefedova L.P., Belov E.V. Osobennosti formirovaniya struktury i svoistv liteinykh Al—Mg-splavov, legirovannykh skandiem [Features of the formation of the structure and properties of cast Al— Mg alloys doped with scandium]. Metallovedenie i termicheskaya obrabotka metallov. 1996. No. 6. Р. 30—32.
21. Drits M.E., Kadaner E.S., Dobatkina T.V., Turkina N.I. O kharaktere vzaimodeistviya skandiya s alyuminiem v bogatoi alyuminiem chasti sistemy [On the nature of the interaction of scandium with aluminum in the aluminum-rich part of the system]. Izv. AN SSSR. 1973. No. 4. P. 213—217.
22. Yakiv’yuk O.V., Sidelnikov S.B., Dovzhenko N.N., Frolov V.F., Krokhin A.Yu., Bezrukikh A.I., Frolov V.A. Issledovanie tekhnologichnosti obrabotki i svoistv prokata iz alyuminievykh splavov sistemy Al—Mg, ekonomno legirovannykh skandiem [Research of manufacturability of processing and properties of hire from aluminum alloys of system Al—Mg, economically alloyed with scandium]. In: Tsvetnye metally i mineraly 2016. Krasnoyarsk: Nauchno-innovatsionniy tsentr, 2016. P. 262—263.
Review
For citations:
Baranov V.N., Sidelnikov S.B., Zenkin E.Yu., Voroshilov D.S. DEVELOPING MODES TO OBTAIN DEFORMED SEMI-FINISHED PRODUCTS FROM EXPERIMENTAL SCANDIUM CONTAINING ALUMINUM ALLOY AND STUDYING THEIR MECHANICAL PROPERTIES. Izvestiya. Non-Ferrous Metallurgy. 2018;(2):43-49. (In Russ.) https://doi.org/10.17073/0021-3438-2018-2-43-49