Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

MAGNETIC FIELD INFLUENCE ON THE CRYSTALLIZATION OF ALUMINIUM MELTS

https://doi.org/10.17073/0021-3438-2018-2-34-42

Abstract

Conscious management of metal crystallization processes in order to obtain a defined ingot microstructure is provided by using various physical fields. These fields affect the melt and change its internal state, and therefore its crystallization kinetics. The paper describes the thermodynamics and kinetics of aluminum crystallization when the melt is treated with magnetic field. A quite simple experimental setup is created to allow studying the magnetic field effect on molten aluminum or other metals and alloys. It consists of several main components: (1) electrical furnace; (2) water-cooled copper crucible combined with an electromagnetic coil; (3) mechanical device for rapid movement of the aluminum melt crucible; (4) system for melt temperature monitoring and control and (5) electronics for data recording and processing. It is experimentally proved that magnetic field changes the melt-crystal phase equilibrium temperature, latent heat of phase transition and temperature of melt supercooling at crystallization. It is shown that changes in these parameters reduce the radius of critical nuclei and increases the speed of their origin. Temperature-time relationship are obtained for the crystallization process. It is experimentally proved that aluminum melt treatment with magnetic field reduces the time of crystallization. The analysis of aluminum samples obtained under the influence of magnetic field has shown that their structure has more fine grains compared with untreated samples.

About the Authors

K. N. Vdovin
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation

Dr. Sci. (Tech.), Prof., Head of Department of the technology of metallurgy and casting processes

455000, Russia, Magnitogorsk, Lenina av., 38



G. A. Dubski
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation
Cand. Sci. (Phуs.-Math.), Associate prof., Department of physics


L. G. Egorova
Nosov Magnitogorsk State Technical University (MSTU)
Russian Federation
Cand. Sci. (Tech.), Associate prof., Department of computer science and applied mathematics


References

1. Дибров И.А. Состояние и перспективы развития производства отливок из алюминиевых сплавов в России. Литейщик Роcсии. 2007. No. 5. С. 28—29; Dibrov I.A. Sostoyanie i perspektivy razvitiya proizvodstva otlivok iz alyuminievykh splavov v Rossii [The state and prospects of development of production of castings of aluminum alloys in Russia]. Liteishchik Rossii. 2007. No. 5. Р. 28—29.

2. Ren-Guo Guan, Tie D. A review on grain refinement of aluminum alloys: progresses, challenges and prospects. Acta Metall. Sinica. 2017. Vol. 30(5). P. 409—432. 3. Deev V.B., Selyanin I.F., Kutsenko A.I., Belov N.A., Ponomareva K.V. Promising resource saving technology for processing melts during production of cast aluminum alloys. Metallurgist. 2015. Vol. 58. No. 11-12. P. 1123—1127.

3. Мочалов П.П., Гецелев З.Н. Литье в электромагнитные кристаллизаторы. Цвет. металлы. 1970. No. 8. С. 62— 63; Mochalov P.P., Getselev Z.N. Lit’e v elektromagnitnye kristallizatory [Casting in electromagnetic mold]. Tsvet. metally. 1970. No. 8. P. 62—63.

4. Ordóñez S., Bustos O., Colás R. Термический и микроструктурный анализ алюминиевого сплава А356, затвердевшего под действием магнитного перемешивания. Междунар. журн. по металлообработке. 2009. С. 189—197; Ordóñez S., Bustos O., Colás R. Termicheskii i mikrostrukturnyi analiz alyuminievogo splava A356, zatverdevshego pod deistviem magnitnogo peremeshivaniya [Thermal and microstructural analysis of aluminum alloy A356, solidified by magnetic stirring]. Mezhdunarodnyi zhurnal po metalloobrabotke. 2009. P. 189—197.

5. Deev V.B., Selyanin I.F., Tsetsorina S.A. Refining the cluster model of metallic melts. Steel Trans. 2008. Vol. 38. No. 8. P. 623, 624.

6. Селянин И.Ф., Деев В.Б., Белов Н.А., Приходько О.Г., Пономарева К.В. Физические модифицирующие воз- действия и их влияние на кристаллизацию литейных сплавов. Изв. вузов. Цвет. металлургия. 2015. No. 3. С. 56—59; Selyanin I.F., Deev V.B., Belov N.A., Prikhodko O.G., Ponomareva K.V. Physical modifying effects and their influence on the crystallization of casting alloys. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 4. P. 434—436.

7. Ефимов В.А., Эльдарханов А.С. Технологии современной металлургии. М.: Новые технологии, 2004; Efimov V.A., El’darkhanov A.S. Tekhnologii sovremennoi metallurgii [Technologies of modern metallurgy]. Moscow: Novye tekhnologii, 2004.

8. Заббаров Р., Бибиков А.М., Живодеров В.М. Структурные изменения и свойства алюминиевых сплавов, обработанных магнитным полем. Металлургия машиностроения. 2009. No. 6. С. 25—27; Zabbarov R., Bibikov A.M., Zhivoderov V.M. Strukturnye izmeneniya i svoistva alyuminievykh splavov, obrabotannykh magnitnym polem [Structural changes and properties of aluminium alloys processed by magnetic field]. Metallurgiya mashinostroeniya. 2009. No. 6. P. 25—27.

9. Никитин К.В., Амосов Е.А., Никитин В.И., Глущенков В.А., Черников Д.Г. Теоретическое и экспериментальное обоснование обработки расплавов на основе алюминия импульсными магнитными полями. Изв. вузов. Цвет. металлургия. 2015. No. 5. С. 11—19; Nikitin K.V., Amosov E.A., Nikitin V I., Glushchenkov V.A., Chernikov D.G. Theoretical and experimental substantiation of treatment of aluminum-based melts by pulsed magnetic fields. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 6. P. 599—605.

10. Никитин К.В., Никитин В.И., Тимошкин И.Ю., Глущенков В.А., Черников Д.Г. Обработка расплавов магнитно-импульсными полями с целью управления структурой и свойствами промышленных силуминов. Изв. вузов. Цвет. металлургия. 2016. No. 2. С. 34— 42; Nikitin K.V., Nikitin V.I., Timoshkin I.Yu., Glushchenkov V.A., Chernikov D.G. Melt treatment by pulsed magnetic fields aimed at controlling the structure and properties of industrial silumins. Russ. J. Non-Ferr. Met. 2016. Vol. 57. No. 3. P. 202—210.

11. Тимошкин И.Ю., Никитин К.В., Никитин В.И., Деев В.Б. Влияние обработки расплавов электромагнитными акустическими полями на структуру и свойства сплавов системы Al—Si. Изв. вузов. Цвет. металлургия. 2016. No. 3. С. 28—33; Timoshkin I.Y., Nikitin K.V., Nikitin V.I., Deev V.B. Influence of treatment of melts by electromagnetic acoustic fields on the structure and properties of alloys of the Al—Si system. Russ. J. NonFerr. Met. 2016. Vol. 57. No. 4. P. 419—423.

12. Ри Э.Х., Дорофеев С.В., Якимов В.И. Влияние облучения жидкой фазы наносекундными электромагнитными импульсами на ее строение, процессы кристаллизации, структурообразования и свойства литейных сплавов. Владивосток: Дальнаука, 2008; Ri E.Kh., Dorofeev S.V., Yakimov V.I. Vliyanie oblucheniya zhidkoi fazy nanosekundnymi elektromagnitnymi impul’sami na ee stroenie, protsessy kristallizatsii, strukturoobrazovaniya i svoistva liteinykh splavov [Effect of irradiation of the liquid phase by nanosecond electromagnetic pulses on its structure, crystallization, structure and properties of casting alloys]. Vladivostok: Dal’nauka, 2008.

13. Микельсон А.Э., Фолифоров В.М. МГД-методы и устройства в промышленности. Магнитная гидродинамика. 1975. No. 1. С. 129—140; Mikel’son A.E., Foliforov V.M. MGD-metody i ustroistva v promyshlennosti. [MHD-methods and devices in the industry]. Magnitnaya gidrodinamika. 1975. No. 1. P. 129—140.

14. Александров Л.Н. Кинетика образования структуры твердых слоев. Новосибирск: Наука, 1972; Aleksandrov L.N. Kinetika obrazovaniya struktury tverdykh sloev [Kinetics of the formation of the structure of solid layers]. Novosibirsk: Nauka, 1972.

15. Propescu M., Vagra B. Microstructure of aluminum alloys solidified by rotating electric field. Mater. Mech. 2015. No. 10. P. 44—48.

16. Zhang Y., Cheng X., Zhong H., Xu Z. , Li L., Gong Y., Miao X., Changjiang, Song C., Zhai Q. Comparative study on the grain refinement of Al—Si alloy solidified under the impact of pulsed electric current and travelling magnetic field. Metals. 2016. Vol. 6. P. 170.

17. Hongsheng D., Yong Z., Sanyong J., Ruirun C., Zhilong Z., Jingjie G., Daming X., Hengzhi F. Infl uences of pulse electric current treatment on solidifi cation microstructures and mechanical properties of Al—Si piston alloys. China Foundry. 2008. Vol. 6. No. 1. P. 24—31.

18. Bustos O., Ordoñez S., Colás R. Rheological and microstructural study of A356 alloy solidified under magnetic stirring. Int. J. Metalcasting. 2013. Vol. 7. No. 1. P. 29—37.

19. Wang X., Luo X., Cong F., Cui J. Research progress of microstructure control for aluminium solidification process. Chinese Sci. Bull. 2013. Vol. 58. No. 4-5. P. 468— 473.

20. Wang, X., Sun, G., Wang, L., Ma Q., Cui J. A new approach for preparing SiC particle-reinforced aluminum matrix composites by applying electromagnetic field. J. Wuhan Univ. of Technology (Mater. Sci.). 2016. Vol. 31. No. 4. P. 717—721.

21. Zhang Y., Zuo T.T., Tang Z., Gao C.M., Dahmen K.A., Peter K., Lu Z.P. Effect of electromagnetic field on microstructure and properties of bulk AlCrFeNiMo0,2 high-entropy alloy. J. Mater. Eng. Perform. 2015. Vol. 4. No. 11. P. 4475—4481.

22. Jie J.C., Zou Q.C., Sun J.L., Lu Y.P., Wang T.M., Li T.J. Separation mechanism of the primary si phase from the hypereutectic Al—Si alloy using a rotating magnetic field during solidification. Acta Mater. 2014. Vol. 72. P. 57—66.

23. Haghayeghi R., de Paula L.C., Zoqui E.J. Comparison of Si refinement efficiency of electromagnetic stirring and ultrasonic treatment for a hypereutectic Al—Si alloy. J. Mater. Eng. Perform. 2017. Vol. 26. No. 4. P. 1900—1907.

24. Ünal N., Çamurlu H.E., Koçak S., Düztepe G. Effect of external ultrasonic treatment on hypereutectic cast aluminium—silicon alloy. Int. J. Cast Met. Res. 2013. Vol. 25. No. 4. P. 246—250.

25. Ünal N., Çamurlu H.E., Koçak S., Düztepe G. Effect of external ultrasonic treatment on hypereutectic cast aluminium—silicon alloy. J. Mater. Res. Technol. 2013. Vol. 2. No. 2. P. 100—109.


Review

For citations:


Vdovin K.N., Dubski G.A., Egorova L.G. MAGNETIC FIELD INFLUENCE ON THE CRYSTALLIZATION OF ALUMINIUM MELTS. Izvestiya. Non-Ferrous Metallurgy. 2018;(2):34-42. (In Russ.) https://doi.org/10.17073/0021-3438-2018-2-34-42

Views: 1592


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)