Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

PRODUCING METALLIC ANTIMONY WITH THE LOW ARSENIC CONTENT FROM ANTIMONY CONCENTRATE

https://doi.org/10.17073/0021-3438-2018-2-28-33

Abstract

The paper provides the method developed by the authors to produce low-arsenic crude antimony from the antimony concentrate containing 47,77 of Sb and 0,17 % of As. The basis of the concentrate is sodium hexahydroxoantimonate or mopungite mineral. Concentrate reduction with coke according to the traditional technology produced crude antimony with a high arsenic content – 0,34 %. To reduce arsenic content in crude metal to 0,1 % and eliminate a separate stage of antimony refining from arsenic, reduction melting is proposed in the presence of sodium plumbite or lead oxide. This allows obtaining crude antimony with an arsenic content of 0,07–0,1 %. The process of antimony concentrate reduction melting on crude antimony was carried out in an oven with silicon carbide heaters in alundum crucibles with charge batches 100–150 g each. The content of base metal and impurities in crude antimony was determined by chemical and atomic absorption methods. The form of arsenic in the concentrate was determined by X-ray phase analysis using the DRON-3 automated diffractometer (CuKα radiation, β filter). Arsenic concentration in the slag phase in the form of Pb2As2O7 lead diarsenate is shown. Thermal gravimetric analysis was performed for reduction melting of charge consisting of antimony concentrate, lead oxide and coke and it was found that metal antimony formation occurs in a temperatures range of 445–950 °C.

About the Authors

A. Zh. Terlikbayeva
National Center for Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan (NC CPMRM RK)
Kazakhstan

Dr. Sci. (Tech.), First deputy of general director

050036, Almaty, Zhandosov str., 67



A. O. Sydykov
National Center for Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan (NC CPMRM RK)
Kazakhstan
Dr. Sci. (Tech.), Director of Department of scientific research


F. A. Berdikulova
National Center for Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan (NC CPMRM RK)
Kazakhstan
Cand. Sci. (Tech.), Leading researcher


E. A. Mazulevsky
National Center for Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan (NC CPMRM RK)
Kazakhstan
Cand. Sci. (Chem.), Head of Laboratory of pure chemicals


References

1. Gorby G. Anderson. The metallurgy of antimony. Chemie der Erde. 2012. Vol. 72. No. 4. P. 3—8.

2. Yang Jian-guang, Tang Chao-bo, Chen Yong-ming, Tang Motang. Separation of antimony from a stibnite concentrate through a low-temperature smelting process to eliminate SO2 emission. Metal. Mater. Trans. B. 2011. No. 42(2). Р. 30—36.

3. Lager T, Forssberg K.S.E. Current processing technology for antimony-bearing ores: A review. Pt. 2. Miner. Eng. 1989. No. 2. Р. 543—556.

4. Qin Wen-qing Luo Hong-lin, Liu Wei, Zheng Yong-xing, Yang Kang, Han Jun-wei. Mechanism of stibnite volatilization at high temperature. J. Central South Univ. Technol. 2015. No. 22. Р. 868—873.

5. Yang Tian Zu, Jiang Ming Xi, Lai Qiong lin, Chen Jin Zhong. Sodium sulfide leaching of low-grade jamesonite concentrate in production of sodium pyroantimoniate. J. Cent. South Univ. Technol. 2005. Vol. 12. No. 3. Р. 290— 294.

6. Yang Tian Zu, Lai Qiong lin, Tong Jian-Jun, Chu Guang. Precipitation of antimony from the solution of sodium thioantimonate by air oxidation in the presence of catalytic agents. J. Cent. South Univ. Technol. 2002. Vol. 9. No. 2. Р. 107—111.

7. Kanarskii A.V., Adamov E.V. Development of a low waste technology for processing sulfide gold-antimony concentrates. Metallurgist. 2012. Vol. 56. No. 1-2. Р. 3—12.

8. Zhang Bao, Li Qian, Shen Wenqian, Min Xiaobo. Recovery of bismuth and antimony metals from pressure — leaching slag. Rare metals. 2012. Vol. 31. No. 1. Р. 102—106.

9. Ayowelle S., Khoshkho M., Kruger P., Sandstrom A. Modelling and process optimization of antimony removal from a complex copper concentrate. Trans. Nonferr. Met. Soc. Chine. 2012. No. 22. Р. 675—685.

10. Королев А.А., Мастюгин С.А., Финеев Д.С., Воинков Р.С., Лобанов В.Г., Топоркова Ю.И. Извлечение сурьмы и свинца: Пат. 2590781 (РФ). 2015; Korolev A.A., Mastugin S.A., Fineev D.S., Voinkov R.S., Lobanov V.G., Toporkova Yu.I. Izvlechenie surmy i svintsa [Antimonium and lead extraction]: Pat. 2590781 (RF). 2015.

11. Ивановский Л.Е., Казанцев Г.Ф., Барбин Н.М., Филин Б.П., Калашников В.А., Федоров И.М. Способ переработки отходов, содержащих свинец, сурьму и олово: Пат. 1818849 (РФ). 1999; Ivanovskii L.E., Kazantsev G.F., Barbin H.M., Filin B.P., Kalashnikov V.A, Fedorov I.M. Sposob pererabotki othodov, soderzhashich svinets, surmu i olovo [The way for recycling of wastes is containing lead, antimony and tin]: Pat. 1818849 (RF). 1999.

12. Гудима Н.В., Шейн Я.П. Краткий справочник по металлургии цветных металлов. М.: Металлургия, 1975; Gudima N.V., Shein Ya.P. Kratki spravochnik po metallugii tsvetnych metallov [A brief guide on metallurgy of non-ferrous metals]. Мoscow: Metallurgia, 1975.

13. Sadegh Firoozi. Termodynamics and mehanisms of lead softening. Montreal (Canada): Sadegh Firoozi, 2005.

14. Сыдыков А., Мазулевский Е., Бердикулова Ф., Ковзаленко Т., Чукманова М., Сейтханов Б. Получение металлической сурьмы из антимонатного сырья свинцо- воцинкового производства РК. Промышленность Казахстана. 2013. No. 1-2. С. 50—54; Sydykov А., Mazulevsky Е., Berdikulova F., Kovzalenko T., Chukmanova M., Seithanov B. Poluchenie metallicheskoi surmy iz antimonatnogo syrya svintsovo-tsinkovogo proizvodstva RK [Recovery of metallic antimony from antimonium raw of lead-zinc production of RK]. Promyshlennost Kazakhstana. 2013. No. 1-2. P. 50—54.

15. Терликбаева А.Ж., Сыдыков А.О., Мазулевский Е.А., Бердикулова Ф.А. Восстановительная плавка антимонатного концентрата свинцового производства. Промышленность Казахстана. 2016. No. 4. С. 47—50; Terlikbayeva А.Zh., Sydykov А.О., Mazulevsky Е.А., Berdikulova F.A. Vosstanovitelnaya plavka antimonatnogo concentrata svintsovogo proizvodstva [Reduse melting of antimony concentrate of lead manufacture]. Promyshlennost Kazakhstana. 2016. No. 4. P. 47—50.

16. Жарменов А.А., Терликбаева А.Ж., Сыдыков А.О., Ма- зулевский Е.А. Способ переработки антимоната натрия: Пат. 27811 (РK). 2013; Zharmenov A.A., Terlikbayeva A.Zh., Sydykov A.O., Mazulevsky E.A. Sposob pererabotki antimonata natria [The way for recycling of sodium antimonate]: Pat. 27811 (RK). 2013.

17. Wang Ying, Chen Shao-chun. Research on removal of lead from rough antimony during fire refining. J. Guangdong Non-Ferr. Met. 2004. Vol. 14. No. 2. P. 111—113.

18. Wu Wen-wei, Wu Xue-hang, Fan Yan-jin, Hou Sheng-yi, Liao Sen, Lai Shui-bin. Investigation with XRD on reaction of BPO4 with PbO and Sb2O3 at high temperature. J. Guangdong Non-Ferr. Met. 2009. No. 1. P. 90.

19. Yang J., Tang C., Tang M., Chen Y., He J., Yang S., Ye L. Method for deep deleading and lead regeneration by fire refining of crude antimony and applications of metaphosphate: Pat. 103290236 (CN). 2014.

20. Ye L.G., Tang C.B., Yang S.H., Chen Y.M., Zhang W.H. Removal of lead from crude antimony by using NaPO3 as lead elimination reagent. J. Mining and Metal, Sec. B: Metallurgy .2015. No. 51(1). P. 97—103.

21. Shugarov S.M., Lopatin S.I. Thermochemical study of gaseous salts of oxiden containing acids: XXVII Antimonates of alkali metals. Russ. J. Gen. Chem. 2011. Vol. 81. No. 7. P. 1411—1416.

22. Dratovsky M., Karilicek J. Lithium and sodium antimonates. Chem. Zvesti. 1981. No. 35(5). P. 629—640.

23. Magalhaes M.C.F., Silva M.C.M. Stability of lead (II) arsenate. Monatshefte fur Chemie Chemical Monthly. 2003. Vol. 134. No. 5. P. 735—743.


Review

For citations:


Terlikbayeva A.Zh., Sydykov A.O., Berdikulova F.A., Mazulevsky E.A. PRODUCING METALLIC ANTIMONY WITH THE LOW ARSENIC CONTENT FROM ANTIMONY CONCENTRATE. Izvestiya. Non-Ferrous Metallurgy. 2018;(2):28-33. (In Russ.) https://doi.org/10.17073/0021-3438-2018-2-28-33

Views: 1247


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)