SILICA AND IRON OXIDE EXTRACTION FROM ALUMINA-CONTAINING SWEEPINGS OF ALUMINUM PRODUCTION
https://doi.org/10.17073/0021-3438-2018-2-4-12
Abstract
The paper suggests a method for recovering contaminants from aluminum-production waste called sweepings to return them further to the electrolytic cell. It is proposed to use the grinding – sizing – reverse flotation – thickening scheme for material beneficiation. Flotigam 7266 (Clariant, Germany), a mixture of primary fatty alkylamines, was used as a flotation reagent in the study to completely remove silicon and iron oxides. The combination of pine oil mixed with kerosene was used to remove carbon particles. Flotation was conducted on the FML 0,3 flotation machine. The raw material, chamber product and tailings were analyzed for the content of carbon and aluminum, iron and silicon oxides using X-ray diffraction, X-ray phase and chemical analysis. It was found that processing the overall mass of the material does not provide a product with an acceptable content of silicon and iron oxides. Based on the X-ray phase analysis of various raw material fractions it was proposed to process material fractions containing minimum contaminants (carbon, silicon and iron oxides). Two fractions were chosen for flotation processing: –0,071 mm and +5,0 mm according to the X-ray diffraction analysis of various material fractions. Processing the first fraction allowed obtaining the chamber product of an acceptable quality. The coarse electrolyte-containing fraction (+5,0 mm) provided the product with the high content of alumina and fluorinated components and low content of carbon and iron oxide, but with a significant amount of silicon oxide. Further use of this product is possible to obtain silicon-aluminum alloys.
About the Authors
N. V. VasyuninaRussian Federation
Cand. Sci. (Tech.), Assistant prof., Department of metallurgy of non-ferrous metals
Institute Non-Ferrous Metals and Materials Science
660025, Krasnoyarsk, Krasnoyarskiу rabochiу av., 95
S. V. Belousov
Russian Federation
Head of Department environmental technologies
660111, Krasnoyarsk, Pogranichnikov str., 37-1
I. V. Dubova
Russian Federation
Cand. Sci. (Tech.), Associate prof., FSE Department
Institute Non-Ferrous Metals and Materials Science
660041, Russia, Krasnoyarsk, Svobodny pr.,79
A. V. Morenko
Russian Federation
Cand. Sci. (Tech.), Manager, Branch of technical development and operational improvement of Technical department of aluminium division
660111, Russia, Krasnoyarsk, Pogranochnikov str., 42/1
K. E. Druzhinin
Russian Federation
Postgraduate, Department of metallurgy of non-ferrous metals
664074, Russia, Irkutsk, Lermontova str., 83
References
1. Wong David S., Tjahyono Nursiani I., Hyland Margaret M. The nature of particles and fines in potroomdust. In: TMS Light Metals 2014. Trondheim, Norway: Wiley, 2014. Р. 553—558.
2. Wong David S., Tjahyono Nursiani I., Hyland Margaret M. Visualising the sources of potroom dust in aluminium smelters. In: TMS Light Metals 2012. Trondheim. Norway: Wiley, 2012. P.833—838.
3. Jassim Ali Al-Mejali, Geir Martin Haarberg, Nasr Bensalah, Ben-Aissa Benkahla, Hans Petter. The role of key impurity elements on the performance of aluminum electrolysis — current efficiency and metal quality. In: TMS Light Metals 2016. Trondheim, Norway: Wiley, 2016. P. 389—394.
4. Зельберг Б.И., Рагозин Л.В., Баранцев А.Г., Ясевич О.И., Григорьев В.Г., Баранов А.Н. Справочник металлурга. Производство алюминия и сплавов на его основе. СПб: МАНЭБ, 2013; Zelberg B.I., Ragozin L.V., Barantsev A.G. Yasevich O.I., Grigoryev V.G., Baranov A.N. Spravochnik metallurga. Proizvodstvo aluminia i splavov na ego osnove [Steel worker’s guide. Aluminum and aluminum alloys production on it base]. Saint Petersburg: MANEB, 2013.
5. Куликов Б.П., Истомин С.П. Переработка отходов алюминиевого производства. Красноярск: ООО «КлассикЦентр», 2004; Kulikov B.P., Istomin S.P. Pererabotka otkhodov alyuminievogo proizvodstva [Processing of wastes of aluminum production]. Krasnoyarsk: LTD «KlassikTsentr», 2004.
6. Кондратьев В.В., Афанасьев А.Д., Ржечицкий А.Э., Ржечицкий Э.П., Паньков С.Д., Иванов Н.А. Способ переработки твердых фторуглеродсодержащих отходов электролитического производства алюминия: Пат. 2429198 (РФ). 2010; Kondratiev V.V., Afanasyev A.D., Rzhechitsky A.E., Rzhechitsky E.P., Pankov S.D., Ivanov N.A. Sposob pererabotki tverdih ftoruglerodsoderzhashih othodov [Method for processing solid fluorocarbon containing waste of electrolytic aluminum production]: Pat. 2429198 (RF). 2010.
7. Баранов А.Н., Гавриленко Л.В., Моренко А.В., Гавриленко А.А., Тимкина Е.В., Юкушевич П.А. Производство фторида кальция из твердых и жидких отходов получения алюминия. Журн. СибФУ. Техника и технологии. 2015. Т. 8. No. 4. С. 468—474; Baranov A.N., Gavrilenko L.V., Morenko A.V., Gavrilenko A.A., Timkina E.V., Yukushevich P.A. Proizvodstvo ftorida kal’tsiya iz tver-dykh i zhidkikh otkhodov polucheniya alyuminiya [Production of the calcium fluoride from solid and liquid wastes of aluminum production process]. Journal SibFU. Technika i Technologiya. 2015. Vol. 8. No. 4. P. 468—474.
8. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S. Somov V. SPL Recycling and Re-processing. In: TMS Light Metals. 2017. Trondheim, Norway: Wiley, 2017. P. 571—578.
9. Black P.J., Cooper B.J. Sustainable practices in spent potliner — an industrial ecology approach. In: TMS Light Metals. 2016. Trondheim, Norway: Wiley, 2016. P. 461— 466.
10. Birry L., Leclerc S., Poirie S. The LCL&L process: A sustainable solution for the treatment and recycling of spent potlining. In: TMS Light Metals. 2016. Trondheim, Norway: Wiley, 2016. P. 467—472.
11. Gaustad G., Olivetti E., Kirchain R. Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation and Recycling. 2012. Vol. 58. P. 79—87.
12. Shinzato M. C., Hypolito R. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Management. 2005. Vol. 25. No. 1. P. 37—46.
13. Bell N., Andersen J.N., Lam H.K.H. Process for the utilization of waste materials from electrolytic aluminum reduction systems: Pat. 4113832 (USA). 1978.
14. Roberts E. J., Bunk S., Angevine P. A. Process for recovery of alumina-cryolite waste in aluminum production: Pat. 4053375 (USA). 1977.
15. Abdrakhimov V.Z. Use of aluminum-containing waste in production of ceramic materials for various purposes. Refract. Industr. Ceram. 2013. Vol. 54. No. 1. P. 7—16.
16. Филиппов С.В., Волянский В.В., Гавриленко Л.В. Переработка шлама и пыли газоочистки способом флотации с получением фторглиноземного концентрата. Сб. науч. ст. 1-й Междунар. конгр. «Цветные металлы Сибири — 2009» (8—10 сентября 2009 г). Красноярск: ООО «Версо», 2009. С. 324—326; Filippov S.V., Volyansky V.V. Gavrilenko L.V. Pererabotka shlama i pyli gazoochistki sposobom flotatsii s polucheniyem ftorglinozemnogo kontsentrata. In: 1-i Mezhdunarodnyy kongress «Tsvetnye metally Sibiri — 2009» [Processing of sludge and dust of gas purification by flotation to obtain fluorinealumina concentrate. In: The first international congress «Non-Ferrous Metals of Siberia — 2009» (08—10.09.2009)]. Krasnoyarsk: LTD «Verso», 2009. P. 324—326.
17. Filippov L.O., Filippova I.V., Severov V.V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Miner. Eng. 2010. Vol. 23. No. 2. P. 91—98.
18. Filippov L.O., Severov V.V., Filippova I.V. An overview of the beneficiation of iron ores via reverse cationic flotation. Int. J. Miner. Process. 2014. Vol. 127. P. 62—69.
19. Авдохин В.М., Губин С.Л. Обратная катионная флотация тонкодисперсных железорудных концентратов. Горн. информ.-анал. бюлл. 2006. No. 5. С. 324— 331; Avdokhin V.M., Gubin S.L. Obratnaya kationnaya flotatsiya tonkodispersnykh zhelezorudnykh kontsentratov [Magnetite concentrate flotation by cation collectors]. Gornyj analiticheskij bjulleten. 2006. No. 5. P. 324—331.
20. Gzogyan T.N., Gubin S.L. Effect of the physical-chemical factors on flotation perfection of magnetite concentrates. J. Mining Sci. 2008. Vol. 44. No. 1. P. 108—114.
21. Васюнина Н.В., Васюнина И.П., Михалев Ю.Г., Виноградов А.М. Поведение вторичного глинозема при его нагревании. Изв. вузов. Цвет. металлургия. 2010. No. 6. С. 11—14; Vasyunina N.V., Vasyunina I.P., Mikhalev Y.G., Vinogradov A.M. Behavior of secondary alumina during heating. Russ. J. Non-Ferr. Met. 2010. No. 6. P. 447—450.
22. Пономарев А.И. Методы химического анализа силикатных и карбонатных горных пород. М.: Изд-во АН СССР, 1961; Ponomarev A.I. Metody khimicheskogo analiza silikatnykh i karbonatnykh gornykh porod [Methods of chemical analysis of silicate and carbonate rocks]. Moscow: AN SSSR, 1961.
23. Алексеев В.Н. Количественный анализ. М.: Химия, 1972; Alekseev V.N. Kolichestvennyi analiz [Quantitative аnalysis]. Moscow: Khimiya, 1972.
24. Abdrakhimov V.Z., Abdrakhimova E.S. Study of phase composition of ceramic materials based on nonferrous metallurgy, chemical, and petrochemical industry aluminum-containing waste. Refract. Industr. Ceram. 2015. Vol. 56. No. 1. P. 5—10.
Review
For citations:
Vasyunina N.V., Belousov S.V., Dubova I.V., Morenko A.V., Druzhinin K.E. SILICA AND IRON OXIDE EXTRACTION FROM ALUMINA-CONTAINING SWEEPINGS OF ALUMINUM PRODUCTION. Izvestiya. Non-Ferrous Metallurgy. 2018;(2):4-12. (In Russ.) https://doi.org/10.17073/0021-3438-2018-2-4-12